Pulse radiolysis of thionicotinamide in aqueous solutions: formation of resonance stabilized species on one electron oxidation

Pulse radiolysis of thionicotinamide in aqueous solutions: formation of resonance stabilized... Pulse radiolysis studies on thionicotinamide (TNA) have been carried out in aqueous solutions at pH 6.8 and 1. The initial species formed by OH radical reaction with TNA at pH 6.8 was found to react with the parent molecule to give a dimer radical species (λmax = 420-440 nm). Reaction of Br2 -• radicals with TNA was found to give a transient species having λmax at 380 nm. This spectrum has been assigned to a resonance stabilized species with free electron delocalised over the -N-C-S bond. Reactions of OH and Cl22 -• radicals with TNA at pH 1 were found to give identical transient species with λmax at 420 nm, which decayed by first-order kinetics at a rate of about 8.0 × 103 s-1. This species is suggested to be the protonated form of the resonance-stabilized species formed at pH 6.8 in the reaction of Br2 -• with TNA. The rate constant for the reaction was 4 × 109 dm3 mol-1 s-1. Semi-reduced species formed by the reaction of e-aq with TNA (k = 1.6 × 1010 dm3 mol-1 s-1) was found to be a good reductant which could transfer electron to methyl viologen. CO2 -• radicals also reacted with TNA to give a reducing species. Although, the absorption peaks in the two cases were at the same wavelengths viz. 380 and 480 nm, the ratios of the peak heights were different suggesting the formation of different species. Hydrogen atoms and (CH3)2C•OH radicals were found to transfer an electron to TNA at pH 1, as seen by quantitative electron transfer to methyl viologen from the transient species. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Pulse radiolysis of thionicotinamide in aqueous solutions: formation of resonance stabilized species on one electron oxidation

Loading next page...
Brill Academic Publishers
Copyright © 2003 by VSP 2003
Chemistry; Inorganic Chemistry; Physical Chemistry
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial