PSO-DS: a scheduling engine for scientific workflow managers

PSO-DS: a scheduling engine for scientific workflow managers Cloud computing, an important source of computing power for the scientific community, requires enhanced tools for an efficient use of resources. Current solutions for workflows execution lack frameworks to deeply analyze applications and consider realistic execution times as well as computation costs. In this study, we propose cloud user–provider affiliation (CUPA) to guide workflow’s owners in identifying the required tools to have his/her application running. Additionally, we develop PSO-DS, a specialized scheduling algorithm based on particle swarm optimization. CUPA encompasses the interaction of cloud resources, workflow manager system and scheduling algorithm. Its featured scheduler PSO-DS is capable of converging strategic tasks distribution among resources to efficiently optimize makespan and monetary cost. We compared PSO-DS performance against four well-known scientific workflow schedulers. In a test bed based on VMware vSphere, schedulers mapped five up-to-date benchmarks representing different scientific areas. PSO-DS proved its efficiency by reducing makespan and monetary cost of tested workflows by 75 and 78%, respectively, when compared with other algorithms. CUPA, with the featured PSO-DS, opens the path to develop a full system in which scientific cloud users can run their computationally expensive experiments. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Supercomputing Springer Journals

PSO-DS: a scheduling engine for scientific workflow managers

Loading next page...
 
/lp/springer_journal/pso-ds-a-scheduling-engine-for-scientific-workflow-managers-iK3RhaLMQL
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Computer Science; Programming Languages, Compilers, Interpreters; Processor Architectures; Computer Science, general
ISSN
0920-8542
eISSN
1573-0484
D.O.I.
10.1007/s11227-017-1992-z
Publisher site
See Article on Publisher Site

Abstract

Cloud computing, an important source of computing power for the scientific community, requires enhanced tools for an efficient use of resources. Current solutions for workflows execution lack frameworks to deeply analyze applications and consider realistic execution times as well as computation costs. In this study, we propose cloud user–provider affiliation (CUPA) to guide workflow’s owners in identifying the required tools to have his/her application running. Additionally, we develop PSO-DS, a specialized scheduling algorithm based on particle swarm optimization. CUPA encompasses the interaction of cloud resources, workflow manager system and scheduling algorithm. Its featured scheduler PSO-DS is capable of converging strategic tasks distribution among resources to efficiently optimize makespan and monetary cost. We compared PSO-DS performance against four well-known scientific workflow schedulers. In a test bed based on VMware vSphere, schedulers mapped five up-to-date benchmarks representing different scientific areas. PSO-DS proved its efficiency by reducing makespan and monetary cost of tested workflows by 75 and 78%, respectively, when compared with other algorithms. CUPA, with the featured PSO-DS, opens the path to develop a full system in which scientific cloud users can run their computationally expensive experiments.

Journal

The Journal of SupercomputingSpringer Journals

Published: Mar 3, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off