Providing built-in keyword search capabilities in RDBMS

Providing built-in keyword search capabilities in RDBMS A common approach to performing keyword search over relational databases is to find the minimum Steiner trees in database graphs transformed from relational data. These methods, however, are rather expensive as the minimum Steiner tree problem is known to be NP-hard. Further, these methods are independent of the underlying relational database management system (RDBMS), thus cannot benefit from the capabilities of the RDBMS. As an alternative, in this paper we propose a new concept called Compact Steiner Tree ( CSTree ), which can be used to approximate the Steiner tree problem for answering top-k keyword queries efficiently. We propose a novel structure-aware index, together with an effective ranking mechanism for fast, progressive and accurate retrieval of top-k highest ranked CSTrees . The proposed techniques can be implemented using a standard relational RDBMS to benefit from its indexing and query-processing capability. We have implemented our techniques in MYSQL, which can provide built-in keyword-search capabilities using SQL. The experimental results show a significant improvement in both search efficiency and result quality comparing to existing state-of-the-art approaches. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Providing built-in keyword search capabilities in RDBMS

Loading next page...
 
/lp/springer_journal/providing-built-in-keyword-search-capabilities-in-rdbms-pmDjUbX1qS
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-010-0188-4
Publisher site
See Article on Publisher Site

Abstract

A common approach to performing keyword search over relational databases is to find the minimum Steiner trees in database graphs transformed from relational data. These methods, however, are rather expensive as the minimum Steiner tree problem is known to be NP-hard. Further, these methods are independent of the underlying relational database management system (RDBMS), thus cannot benefit from the capabilities of the RDBMS. As an alternative, in this paper we propose a new concept called Compact Steiner Tree ( CSTree ), which can be used to approximate the Steiner tree problem for answering top-k keyword queries efficiently. We propose a novel structure-aware index, together with an effective ranking mechanism for fast, progressive and accurate retrieval of top-k highest ranked CSTrees . The proposed techniques can be implemented using a standard relational RDBMS to benefit from its indexing and query-processing capability. We have implemented our techniques in MYSQL, which can provide built-in keyword-search capabilities using SQL. The experimental results show a significant improvement in both search efficiency and result quality comparing to existing state-of-the-art approaches.

Journal

The VLDB JournalSpringer Journals

Published: Feb 1, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off