Proton kinetics through the cuticle layer in maize

Proton kinetics through the cuticle layer in maize A Monte Carlo simulation was used to determine the dependence between the thickness of the cuticle layer of coleoptiles and the spectra of the H+ ions (i.e., protons) passing through this layer, which is treated as a potential barrier. The apparently simplistic model of a walled cylinder filled with H+ ions propagating through the cuticle layer was solved in silico. We showed that the thickness of the cuticle layer clearly influences the intensity of the efflux of protons, which changes the pH of the surrounding solution. Then, diffusion and cross-correlation data for maize (Zea mays L.) coleoptile growth and H+ ion extrusion were probed in an experiment and compared with the Monte Carlo computation results. Ex vivo experiments for the control (APW), auxin (IAA) and fusicoccin (FC) were conducted. The transition from time-delayed pH—(abrasion time) cross-correlation to proton efflux that was not retarded was obtained, thus confirming the canvas that constitutes the acid growth hypothesis and the rationale that was accepted for the derivation of the ‘equation of state’ for plants. Acta Physiologiae Plantarum Springer Journals

Proton kinetics through the cuticle layer in maize

Loading next page...
Springer Berlin Heidelberg
Copyright © 2017 by The Author(s)
Life Sciences; Plant Physiology; Plant Genetics and Genomics; Plant Biochemistry; Plant Pathology; Plant Anatomy/Development; Agriculture
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial