Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Proteomic changes in response to low-light stress during cotton fiber elongation

Proteomic changes in response to low-light stress during cotton fiber elongation Numerous studies have illustrated that low light is one of the major abiotic stresses limiting cotton (Gossypium hirsutum L.) fiber length, but studies addressing molecular mechanisms contributing to reduced fiber growth under low light are lacking. To investigate the molecular mechanisms of cotton fiber elongation in response to low light, an experiment of low light caused by shading was conducted with cotton cultivar NuCOTN 33B. The results showed that low light resulted in shorter fiber length. Proteomic analysis of four developmental stages (5, 10, 15 and 20 days post-anthesis) showed that 49 proteins were significantly responsive to low light. 39 differentially expressed proteins that included some known as well as some novel low-light stress-responsive proteins were identified. These differentially expressed proteins were involved in signal transduction, carbohydrate/energy metabolism, cell wall component synthesis, protein metabolism, cytoskeleton, nitrogen metabolism and stress responses. The results also showed that the decrease in fiber length might be because the levels of signal-related protein (phospholipase D), cytoskeletal proteins (two annexins isoforms), cell wall component-related proteins (sucrose synthase, UDP-d-glucuronic acid 4-epimerase and rhamnose synthase), carbohydrate metabolism-proteins (phosphofructokinase, dihydrolipoamide dehydrogenase, vacuolar H+-ATPase catalytic subunit, malate dehydrogenase and isocitrate dehydrogenase), and stress-related proteins (peroxisomal catalase, short chain alcohol dehydrogenase) were decreased under low light. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Acta Physiologiae Plantarum Springer Journals

Proteomic changes in response to low-light stress during cotton fiber elongation

Loading next page...
1
 
/lp/springer_journal/proteomic-changes-in-response-to-low-light-stress-during-cotton-fiber-OA8Oebrqcp

References (50)

Publisher
Springer Journals
Copyright
Copyright © 2017 by Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków
Subject
Life Sciences; Plant Physiology; Plant Genetics and Genomics; Plant Biochemistry; Plant Pathology; Plant Anatomy/Development; Agriculture
ISSN
0137-5881
eISSN
1861-1664
DOI
10.1007/s11738-017-2499-1
Publisher site
See Article on Publisher Site

Abstract

Numerous studies have illustrated that low light is one of the major abiotic stresses limiting cotton (Gossypium hirsutum L.) fiber length, but studies addressing molecular mechanisms contributing to reduced fiber growth under low light are lacking. To investigate the molecular mechanisms of cotton fiber elongation in response to low light, an experiment of low light caused by shading was conducted with cotton cultivar NuCOTN 33B. The results showed that low light resulted in shorter fiber length. Proteomic analysis of four developmental stages (5, 10, 15 and 20 days post-anthesis) showed that 49 proteins were significantly responsive to low light. 39 differentially expressed proteins that included some known as well as some novel low-light stress-responsive proteins were identified. These differentially expressed proteins were involved in signal transduction, carbohydrate/energy metabolism, cell wall component synthesis, protein metabolism, cytoskeleton, nitrogen metabolism and stress responses. The results also showed that the decrease in fiber length might be because the levels of signal-related protein (phospholipase D), cytoskeletal proteins (two annexins isoforms), cell wall component-related proteins (sucrose synthase, UDP-d-glucuronic acid 4-epimerase and rhamnose synthase), carbohydrate metabolism-proteins (phosphofructokinase, dihydrolipoamide dehydrogenase, vacuolar H+-ATPase catalytic subunit, malate dehydrogenase and isocitrate dehydrogenase), and stress-related proteins (peroxisomal catalase, short chain alcohol dehydrogenase) were decreased under low light.

Journal

Acta Physiologiae PlantarumSpringer Journals

Published: Aug 22, 2017

There are no references for this article.