Proteins of cotyledons of mature horse chestnut seeds

Proteins of cotyledons of mature horse chestnut seeds This is the first characterization of proteins from storage parenchyma of cotyledons of mature dormant recalcitrant horse chestnut (Aesculus hippocastanum L.) seeds and evaluation the cell protein-synthesizing capacity. It was established that the content of protein in cotyledons did not exceed 0.5% of tissue fresh weight. Soluble proteins (the proteins of the postmitochondrial supernatant or cytosol) comprised the bulk (up to 90%) of total proteins. Protein of subcellular structures (20000 g-pellet) comprised 5–7% of total protein. Cotyledon proteins were heterogenous in their charges and molecular weights of subunits. Cotyledon protein was easily extracted with a salt (1 M NaCl); they comprised 90% of water-soluble albumin-like proteins. The proportion of globulins was insignificant; it did not exceed 5%. Most water-soluble proteins (more than 80%) were tolerant to heat denaturing. Among these heat-stable proteins, two major groups of polypeptides dominated: an electrophoretically homogeneous component with a mol wt of 24–25 kD and a complex group from three to five polypeptides with mol wts in the range between 6 and 12 kD. Native heat-stable proteins had disulfide bonds. Four fractions of heat-stable proteins were obtained by ammonium sulfate fractionation; three of them were alike in their polypeptide composition and contained major components with mol wts of 24–25 and 5–12 kD. It was established that the active translational machinery functioned in the cells of storage parenchyma in cotyledons of mature dormant horse chestnut seeds. During each stage of stratification, cotyledon fragments incorporated 35S-methionine into TCA-insoluble material more actively than axial organs. We discuss cotyledon protein composition, their function as a storage organ, and a possible role of heat-stable proteins. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Proteins of cotyledons of mature horse chestnut seeds

Loading next page...
 
/lp/springer_journal/proteins-of-cotyledons-of-mature-horse-chestnut-seeds-6etXRgCl7e
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2006 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443706050062
Publisher site
See Article on Publisher Site

Abstract

This is the first characterization of proteins from storage parenchyma of cotyledons of mature dormant recalcitrant horse chestnut (Aesculus hippocastanum L.) seeds and evaluation the cell protein-synthesizing capacity. It was established that the content of protein in cotyledons did not exceed 0.5% of tissue fresh weight. Soluble proteins (the proteins of the postmitochondrial supernatant or cytosol) comprised the bulk (up to 90%) of total proteins. Protein of subcellular structures (20000 g-pellet) comprised 5–7% of total protein. Cotyledon proteins were heterogenous in their charges and molecular weights of subunits. Cotyledon protein was easily extracted with a salt (1 M NaCl); they comprised 90% of water-soluble albumin-like proteins. The proportion of globulins was insignificant; it did not exceed 5%. Most water-soluble proteins (more than 80%) were tolerant to heat denaturing. Among these heat-stable proteins, two major groups of polypeptides dominated: an electrophoretically homogeneous component with a mol wt of 24–25 kD and a complex group from three to five polypeptides with mol wts in the range between 6 and 12 kD. Native heat-stable proteins had disulfide bonds. Four fractions of heat-stable proteins were obtained by ammonium sulfate fractionation; three of them were alike in their polypeptide composition and contained major components with mol wts of 24–25 and 5–12 kD. It was established that the active translational machinery functioned in the cells of storage parenchyma in cotyledons of mature dormant horse chestnut seeds. During each stage of stratification, cotyledon fragments incorporated 35S-methionine into TCA-insoluble material more actively than axial organs. We discuss cotyledon protein composition, their function as a storage organ, and a possible role of heat-stable proteins.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Aug 29, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off