Protein–protein interactions of huntingtin in the hippocampus

Protein–protein interactions of huntingtin in the hippocampus Huntingtin (HTT) occurs in the neuronal cytoplasm and can interact with structural elements of synapses. Huntington’s disease (HD) results from pathological expansion of a polyglutamine stretch in the HTT molecule, being probably associated with aberrant protein–protein interactions. The pathogenetic mechanism is still incompletely understood. Alterations of the synaptic structure and plasticity in the hippocampus are observed in early HD. The objective of the study was to theoretically evaluate the HTT contribution to changes in synaptic plasticity by integrating the available experimental data. HTT protein complexes are involved in maintaining the efficiency of synaptic transmission. A pathogenic HTT form (polyQ-HTT) probably disrupts the protein–protein interactions in distorts the dynamics of molecular processes in the synapsis. It was assumed that polyQ-HTT may compete with postsynaptic density proteins and proteins regulating cytoskeleton remodeling. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Molecular Biology Springer Journals

Protein–protein interactions of huntingtin in the hippocampus

Loading next page...
 
/lp/springer_journal/protein-protein-interactions-of-huntingtin-in-the-hippocampus-uNt1quLRQO
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Inc.
Subject
Life Sciences; Life Sciences, general; Biochemistry, general; Human Genetics
ISSN
0026-8933
eISSN
1608-3245
D.O.I.
10.1134/S002689331704015X
Publisher site
See Article on Publisher Site

Abstract

Huntingtin (HTT) occurs in the neuronal cytoplasm and can interact with structural elements of synapses. Huntington’s disease (HD) results from pathological expansion of a polyglutamine stretch in the HTT molecule, being probably associated with aberrant protein–protein interactions. The pathogenetic mechanism is still incompletely understood. Alterations of the synaptic structure and plasticity in the hippocampus are observed in early HD. The objective of the study was to theoretically evaluate the HTT contribution to changes in synaptic plasticity by integrating the available experimental data. HTT protein complexes are involved in maintaining the efficiency of synaptic transmission. A pathogenic HTT form (polyQ-HTT) probably disrupts the protein–protein interactions in distorts the dynamics of molecular processes in the synapsis. It was assumed that polyQ-HTT may compete with postsynaptic density proteins and proteins regulating cytoskeleton remodeling.

Journal

Molecular BiologySpringer Journals

Published: Aug 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off