Protein–nucleotide contacts in motor proteins detected by DNP-enhanced solid-state NMR

Protein–nucleotide contacts in motor proteins detected by DNP-enhanced solid-state NMR DNP (dynamic nuclear polarization)-enhanced solid-state NMR is employed to directly detect protein–DNA and protein–ATP interactions and identify the residue type establishing the intermolecular contacts. While conventional solid-state NMR can detect protein–DNA interactions in large oligomeric protein assemblies in favorable cases, it typically suffers from low signal-to-noise ratios. We show here, for the oligomeric DnaB helicase from Helicobacter pylori complexed with ADP and single-stranded DNA, that this limitation can be overcome by using DNP-enhanced spectroscopy. Interactions are established by DNP-enhanced 31P–13C polarization-transfer experiments followed by the recording of a 2D 13C–13C correlation experiment. The NMR spectra were obtained in less than 2 days and allowed the identification of residues of the motor protein involved in nucleotide binding. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Biomolecular NMR Springer Journals

Protein–nucleotide contacts in motor proteins detected by DNP-enhanced solid-state NMR

Loading next page...
 
/lp/springer_journal/protein-nucleotide-contacts-in-motor-proteins-detected-by-dnp-enhanced-7dKd0Ca4VN
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Physics; Biological and Medical Physics, Biophysics; Biochemistry, general; Spectroscopy/Spectrometry
ISSN
0925-2738
eISSN
1573-5001
D.O.I.
10.1007/s10858-017-0144-3
Publisher site
See Article on Publisher Site

Abstract

DNP (dynamic nuclear polarization)-enhanced solid-state NMR is employed to directly detect protein–DNA and protein–ATP interactions and identify the residue type establishing the intermolecular contacts. While conventional solid-state NMR can detect protein–DNA interactions in large oligomeric protein assemblies in favorable cases, it typically suffers from low signal-to-noise ratios. We show here, for the oligomeric DnaB helicase from Helicobacter pylori complexed with ADP and single-stranded DNA, that this limitation can be overcome by using DNP-enhanced spectroscopy. Interactions are established by DNP-enhanced 31P–13C polarization-transfer experiments followed by the recording of a 2D 13C–13C correlation experiment. The NMR spectra were obtained in less than 2 days and allowed the identification of residues of the motor protein involved in nucleotide binding.

Journal

Journal of Biomolecular NMRSpringer Journals

Published: Nov 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off