Protein Kinase C and Regulatory Volume Decrease in Mudpuppy Red Blood Cells

Protein Kinase C and Regulatory Volume Decrease in Mudpuppy Red Blood Cells This study examined whether protein kinase C (PKC) stimulates K+ efflux during regulatory volume decrease (RVD) in Necturus maculosus (mudpuppy) red blood cells (RBCs). The limit of osmotic fragility increased with the general protein kinase inhibitor 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7, 10 μm), but not with the cyclic nucleotide-dependent kinase antagonists N-(2′-guanidinoethyl)-5-isoquinolinesulfonamide (HA-1004, 10 μm) and N-2-(methylamino)ethyl-5-isoquinoline-sulfonamide (H-8, 5 μm). Consistent with these results, osmotic fragility also increased with the PKC antagonists bisindolylmaleimide I (GF-109203X or bis I, 100 nm), bisindolylmaleimide II (bis II, 100 nm), and chelerythrine (10 μm). The effect of these three antagonists and H-7 was reversed with gramicidin (5 μm in a choline Ringer), indicating PKC was linked to K+ efflux (gramicidin is a cationophore that was used to ensure a high K+ permeability). We also measured cell volume recovery from hypotonic shock (0.5× Ringer) with a Coulter counter and estimated cell volume from the hematocrit. The percent RVD compared to control decreased with H-7 (10 μm), sphingosine (100 nm), chelerythrine (10 μm), bis I (100 nm), and bis II (100 nm), but not with HA-1004 (10 μm) nor H-8 (5 μm). Inhibition of RVD by H-7, chelerythrine, bis I, and bis II was reversed with gramicidin (5 μm). Furthermore, using the patch clamp technique, we found H-7 (10 μm) reduced a whole cell conductance that was activated during cell swelling. In addition, a conductance responsible for K+ efflux during cell swelling was inhibited by bis I (100 nm) and bis II (100 nm). These results indicate that a conductive pathway mediating K+ loss during RVD is regulated, at least in part, by protein kinase C. The Journal of Membrane Biology Springer Journals

Protein Kinase C and Regulatory Volume Decrease in Mudpuppy Red Blood Cells

Loading next page...
Copyright © Inc. by 1998 Springer-Verlag New York
Life Sciences; Biochemistry, general; Human Physiology
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial