Protective effects of complementary Ca2+ on low-light-induced oxidative damage in tall fescue

Protective effects of complementary Ca2+ on low-light-induced oxidative damage in tall fescue Low-light (LL) intensity is a primary abiotic stressor that negatively influences turf grass quality. In the present experiment, we studied the effect of exogenous Ca2+ (0, 10, 50, 100, and 200 mM) on the antioxidant system, the accumulation of MDA and proline, the content of photosynthetic pigments in plant leaves in order to investigate whether exogenous Ca2+ treatment improves LL tolerance in tall fescue (Festuca arundinacea Schreb.). We have found that LL significantly reduced a number of growth parameters (plant height, leaf width, leaf fresh weight, root fresh weight, leaf dry weight, and root dry weight), chlorophyll (Chl) a and Chl b contents, and carotenoid (Car) levels, while considerably enhancing electrolyte leakage (EL), MDA accumulation, calcium (Ca2+) concentration, and generation of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2) and superoxide radical (O 2 ·− ). Moreover, LL significantly induced the activities of antioxidant enzymes, such as peroxidase (POD) and catalase (CAT), and slightly increased the activity of superoxide dismutase (SOD) in tall fescue leaves. In contrast, POD and SOD activities declined considerably while CAT activity significantly increased in plant roots under LL stress. The application of 50 mM Ca2+ significantly improved the aforementioned growth parameters, the content of photosynthetic pigments, and further enhanced the activities of POD, SOD, and CAT, but decreased electrolyte leakage and MDA and H2O2 levels in the leaves and roots of tall fescue under LL stress. These results suggest that Ca2+ is likely involved in a resistance to LL by regulating antioxidant enzyme action in tall fescue leaves and roots. Russian Journal of Plant Physiology Springer Journals

Protective effects of complementary Ca2+ on low-light-induced oxidative damage in tall fescue

Loading next page...
Pleiades Publishing
Copyright © 2014 by Pleiades Publishing, Ltd.
Life Sciences; Plant Physiology; Plant Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial