Protective effect of dietary polyphenol caffeic acid on ethylene glycol-induced kidney stones in rats

Protective effect of dietary polyphenol caffeic acid on ethylene glycol-induced kidney stones in... Dietary polyphenol caffeic acid (1) has been reported for various pharmacological activities. The aim of the current study was to investigate the effect of caffeic acid (1) on ethylene glycol-induced renal stones in rats. For the study, male Wistar rats were divided into seven groups; normal, pathological, and standard drug controls, and preventive and curative groups. Normal control group received drinking water for 8 weeks. Pathological, standard drug, preventive, and curative groups received 0.75% ethylene glycol in drinking water for the induction of calcium oxalate stone formation, along with the regular diet. Standard drug group received Urocit-K by gavage from day 1, while preventive and curative groups received caffeic acid (1) by gavage at doses of 20 and 40 mg/kg on day 1 and day 14, respectively. At the end of the experiment, urine analysis and kidney histopathology were performed. Real-time PCR was performed to evaluate the renal expression of the most important genes involved in urolithiasis, i.e., osteopontin, Tamm-Horsfall, prothrombin fragment 1, and bikunin genes. The results indicated that in both the preventive and curative groups, treatment of rats with caffeic acid (1) significantly regulated the altered biochemical parameters, along with the remarkable reduction of calcium oxalate deposits in the kidneys, as compared to the pathological group. Treatment with compound 1 also resulted in down-regulation of the osteopontin gene, and up-regulation of the prothrombin fragment 1, Tamm-Horsfall, and bikunin genes. These results suggest that caffeic acid (1) can be further investigated for the prevention, and treatment of kidney stones. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Urological Research Springer Journals

Protective effect of dietary polyphenol caffeic acid on ethylene glycol-induced kidney stones in rats

Loading next page...
 
/lp/springer_journal/protective-effect-of-dietary-polyphenol-caffeic-acid-on-ethylene-xY1FdGrjfb
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Medicine & Public Health; Urology; Nephrology; Medical Biochemistry
ISSN
2194-7228
eISSN
2194-7236
D.O.I.
10.1007/s00240-017-0982-1
Publisher site
See Article on Publisher Site

Abstract

Dietary polyphenol caffeic acid (1) has been reported for various pharmacological activities. The aim of the current study was to investigate the effect of caffeic acid (1) on ethylene glycol-induced renal stones in rats. For the study, male Wistar rats were divided into seven groups; normal, pathological, and standard drug controls, and preventive and curative groups. Normal control group received drinking water for 8 weeks. Pathological, standard drug, preventive, and curative groups received 0.75% ethylene glycol in drinking water for the induction of calcium oxalate stone formation, along with the regular diet. Standard drug group received Urocit-K by gavage from day 1, while preventive and curative groups received caffeic acid (1) by gavage at doses of 20 and 40 mg/kg on day 1 and day 14, respectively. At the end of the experiment, urine analysis and kidney histopathology were performed. Real-time PCR was performed to evaluate the renal expression of the most important genes involved in urolithiasis, i.e., osteopontin, Tamm-Horsfall, prothrombin fragment 1, and bikunin genes. The results indicated that in both the preventive and curative groups, treatment of rats with caffeic acid (1) significantly regulated the altered biochemical parameters, along with the remarkable reduction of calcium oxalate deposits in the kidneys, as compared to the pathological group. Treatment with compound 1 also resulted in down-regulation of the osteopontin gene, and up-regulation of the prothrombin fragment 1, Tamm-Horsfall, and bikunin genes. These results suggest that caffeic acid (1) can be further investigated for the prevention, and treatment of kidney stones.

Journal

Urological ResearchSpringer Journals

Published: Jun 14, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off