Protecting multipartite entanglement against weak-measurement-induced amplitude damping by local unitary operations

Protecting multipartite entanglement against weak-measurement-induced amplitude damping by local... Protecting entanglement from decoherence has attracted more and more attention recently. Amplitude damping is a typical decoherence mechanism. If we detect the environment to guarantee no excitation escapes from the system, the amplitude damping is modified into a weak measurement of the system state. In this paper, based on local pulse series, we propose a scheme for protecting tripartite entanglement against decaying caused by weak-measurement-induced damping. Unlike previous bipartite state protection schemes, we consider three different situations: A series of unitary operations are applied on all of the three qubits, on two of the three qubits, and on only one qubit. The results show that this protocol can protect remote tripartite entanglement with a wide range of unitary operations. For the case of GHZ state, when the uniform pulses are applied on all qubits or on two qubits, the tripartite entanglement can be fixed around the entanglement of the initial state. Moreover, in the W state case, if a train of uniform pulses is applied on two qubits, we can see that the bipartite entanglement can be enhanced to the maximum with the third qubit being traced out. We also generalize our scheme to the cases of the superposition and mixture of GHZ and W states, and the numerical simulation shows that our protection scheme still works fine. The most distinct advantage of this entanglement protection scheme is that there is no need for the users to synchronize their operations. The fluctuations of the time interval between two adjacent local unitary operations, the operation parameters, and the pulse duration are all taken into consideration. All these advantages suggest that our scheme is much simpler and feasible, which may warrant its experimental realization. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Protecting multipartite entanglement against weak-measurement-induced amplitude damping by local unitary operations

Loading next page...
 
/lp/springer_journal/protecting-multipartite-entanglement-against-weak-measurement-induced-CX3oQDN1Z8
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-015-1041-x
Publisher site
See Article on Publisher Site

Abstract

Protecting entanglement from decoherence has attracted more and more attention recently. Amplitude damping is a typical decoherence mechanism. If we detect the environment to guarantee no excitation escapes from the system, the amplitude damping is modified into a weak measurement of the system state. In this paper, based on local pulse series, we propose a scheme for protecting tripartite entanglement against decaying caused by weak-measurement-induced damping. Unlike previous bipartite state protection schemes, we consider three different situations: A series of unitary operations are applied on all of the three qubits, on two of the three qubits, and on only one qubit. The results show that this protocol can protect remote tripartite entanglement with a wide range of unitary operations. For the case of GHZ state, when the uniform pulses are applied on all qubits or on two qubits, the tripartite entanglement can be fixed around the entanglement of the initial state. Moreover, in the W state case, if a train of uniform pulses is applied on two qubits, we can see that the bipartite entanglement can be enhanced to the maximum with the third qubit being traced out. We also generalize our scheme to the cases of the superposition and mixture of GHZ and W states, and the numerical simulation shows that our protection scheme still works fine. The most distinct advantage of this entanglement protection scheme is that there is no need for the users to synchronize their operations. The fluctuations of the time interval between two adjacent local unitary operations, the operation parameters, and the pulse duration are all taken into consideration. All these advantages suggest that our scheme is much simpler and feasible, which may warrant its experimental realization.

Journal

Quantum Information ProcessingSpringer Journals

Published: Jun 10, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off