Prostate segmentation in transrectal ultrasound using magnetic resonance imaging priors

Prostate segmentation in transrectal ultrasound using magnetic resonance imaging priors Purpose In the current standard of care, real-time transrectal ultrasound (TRUS) is commonly used for prostate brachytherapy guidance. As TRUS provides limited soft tissue contrast, segmenting the prostate gland in TRUS images is often challenging and subject to inter-observer and intra-observer variability, especially at the base and apex where the gland boundary is hard to define. Magnetic resonance imaging (MRI) has higher soft tissue contrast allowing the prostate to be contoured easily. In this paper, we aim to show that prostate segmentation in TRUS images informed by MRI priors can improve on prostate segmentation that relies only on TRUS images. Methods First, we compare the TRUS-based prostate segmentation used in the treatment of 598 patients with a high-quality MRI prostate atlas and observe inconsistencies at the apex and base. Second, motivated by this finding, we propose an alternative TRUS segmentation technique that is fully automatic and uses MRI priors. The algorithm uses a convolutional neural network to segment the prostate in TRUS images at mid-gland, where the gland boundary can be clearly seen. It then reconstructs the gland boundary at the apex and base with the aid of a statistical shape model built from an MRI atlas of 78 http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Computer Assisted Radiology and Surgery Springer Journals

Prostate segmentation in transrectal ultrasound using magnetic resonance imaging priors

Loading next page...
 
/lp/springer_journal/prostate-segmentation-in-transrectal-ultrasound-using-magnetic-xH5h0BJ1DQ
Publisher
Springer Journals
Copyright
Copyright © 2018 by CARS
Subject
Medicine & Public Health; Imaging / Radiology; Surgery; Health Informatics; Computer Imaging, Vision, Pattern Recognition and Graphics; Computer Science, general
ISSN
1861-6410
eISSN
1861-6429
D.O.I.
10.1007/s11548-018-1742-6
Publisher site
See Article on Publisher Site

Abstract

Purpose In the current standard of care, real-time transrectal ultrasound (TRUS) is commonly used for prostate brachytherapy guidance. As TRUS provides limited soft tissue contrast, segmenting the prostate gland in TRUS images is often challenging and subject to inter-observer and intra-observer variability, especially at the base and apex where the gland boundary is hard to define. Magnetic resonance imaging (MRI) has higher soft tissue contrast allowing the prostate to be contoured easily. In this paper, we aim to show that prostate segmentation in TRUS images informed by MRI priors can improve on prostate segmentation that relies only on TRUS images. Methods First, we compare the TRUS-based prostate segmentation used in the treatment of 598 patients with a high-quality MRI prostate atlas and observe inconsistencies at the apex and base. Second, motivated by this finding, we propose an alternative TRUS segmentation technique that is fully automatic and uses MRI priors. The algorithm uses a convolutional neural network to segment the prostate in TRUS images at mid-gland, where the gland boundary can be clearly seen. It then reconstructs the gland boundary at the apex and base with the aid of a statistical shape model built from an MRI atlas of 78

Journal

International Journal of Computer Assisted Radiology and SurgerySpringer Journals

Published: Mar 27, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off