Prospects for application of breakthrough technologies in breeding: The CRISPR/Cas9 system for plant genome editing

Prospects for application of breakthrough technologies in breeding: The CRISPR/Cas9 system for... Integration of the methods of contemporary genetics and biotechnology into the breeding process is assessed, and the potential role and efficacy of genome editing as a novel approach is discussed. Use of molecular (DNA) markers for breeding was proposed more than 30 years ago. Nowadays, they are widely used as an accessory tool in order to select plants by mono- and olygogenic traits. Presently, the genomic approaches are actively introduced into the breeding processes owing to automatization of DNA polymorphism analyses and development of comparatively cheap methods of DNA sequencing. These approaches provide effective selection by complex quantitative traits, and are based on the full-genome genotyping of the breeding material. Moreover, biotechnological tools, such as doubled haploids production, which provides fast obtainment of homozygotes, are widely used in plant breeding. Use of genomic and biotechnological approaches makes the development of varieties less time consuming. It also decreases the cultivated areas and financial expenditures required for accomplishment of the breeding process. However, the capacities of modern breeding are not limited to only these advantages. Experiments carried out on plants about 10 years ago provided the first data on genome editing. In the last two years, we have observed a sharp increase in the number of publications that report about successful experiments aimed at plant genome editing owing to the use of the relatively simple and convenient CRISPR/Cas9 system. The goal of some of these experiments was to modify agriculturally valuable genes of cultivated plants, such as potato, cabbage, tomato, maize, rice, wheat, barley, soybean and sorghum. These studies show that it is possible to obtain nontransgenic plants carrying stably inherited, specifically determined mutations using the CRISPR/Cas9 system. This possibility offers the challenge to obtain varieties with predetermined mono- and olygogenic traits. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Prospects for application of breakthrough technologies in breeding: The CRISPR/Cas9 system for plant genome editing

Loading next page...
 
/lp/springer_journal/prospects-for-application-of-breakthrough-technologies-in-breeding-the-Bu58RI70C0
Publisher
Pleiades Publishing
Copyright
Copyright © 2016 by Pleiades Publishing, Inc.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S102279541607005X
Publisher site
See Article on Publisher Site

Abstract

Integration of the methods of contemporary genetics and biotechnology into the breeding process is assessed, and the potential role and efficacy of genome editing as a novel approach is discussed. Use of molecular (DNA) markers for breeding was proposed more than 30 years ago. Nowadays, they are widely used as an accessory tool in order to select plants by mono- and olygogenic traits. Presently, the genomic approaches are actively introduced into the breeding processes owing to automatization of DNA polymorphism analyses and development of comparatively cheap methods of DNA sequencing. These approaches provide effective selection by complex quantitative traits, and are based on the full-genome genotyping of the breeding material. Moreover, biotechnological tools, such as doubled haploids production, which provides fast obtainment of homozygotes, are widely used in plant breeding. Use of genomic and biotechnological approaches makes the development of varieties less time consuming. It also decreases the cultivated areas and financial expenditures required for accomplishment of the breeding process. However, the capacities of modern breeding are not limited to only these advantages. Experiments carried out on plants about 10 years ago provided the first data on genome editing. In the last two years, we have observed a sharp increase in the number of publications that report about successful experiments aimed at plant genome editing owing to the use of the relatively simple and convenient CRISPR/Cas9 system. The goal of some of these experiments was to modify agriculturally valuable genes of cultivated plants, such as potato, cabbage, tomato, maize, rice, wheat, barley, soybean and sorghum. These studies show that it is possible to obtain nontransgenic plants carrying stably inherited, specifically determined mutations using the CRISPR/Cas9 system. This possibility offers the challenge to obtain varieties with predetermined mono- and olygogenic traits.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Jul 30, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off