Properties of Hexadecaprenyl Monophosphate/Dioleoylphosphatidylcholine Vesicular Lipid Bilayers

Properties of Hexadecaprenyl Monophosphate/Dioleoylphosphatidylcholine Vesicular Lipid Bilayers In our study we investigated hemispherical phospholipid bilayer membranes and phospholipid vesicles made from hexadecaprenyl monophosphate (C80-P), dioleoylphosphatidylocholine (DOPC) and their mixtures by voltammetric and transmission electron microscopy (TEM) techniques. The current-voltage characteristics, the membrane conductance-temperature relationships and the membrane breakdown voltage have been measured for different mixtures of C80-P/DOPC. The membrane hydrophobic thickness and the activation energy of ion migration across the membrane have been determined. Hexadecaprenyl monophosphate decreased in comparison with DOPC bilayers, the membrane conductance, increased the activation energy and the membrane breakdown voltage for the various value of C80-P/DOPC mole ratio, respectively. The TEM micrographs of C80-P, DOPC and C80-P/DOPC lipid vesicles showed several characteristic structures, which have been described. The data indicate that hexadecaprenyl monophosphate modulates the surface curvature of the membranes by the formation of aggregates in liquid-crystalline phospholipid membranes. We suggest that the dynamics and conformation of hexadecaprenyl monophosphate in membranes depend on the transmembrane electrical potential. The electron micrographs indicate that polyprenyl monophosphates with single isoprenyl chains form lipid vesicular bilayers. The thickness of the bilayer, evaluated from the micrographs, was 11 ± 1 nm. This property creates possibility of forming primitive bilayer lipid membranes by long single-chain polyprenyl phosphates in abiotic conditions. It can be the next step in understanding the origin of protocells. The Journal of Membrane Biology Springer Journals

Properties of Hexadecaprenyl Monophosphate/Dioleoylphosphatidylcholine Vesicular Lipid Bilayers

Loading next page...
Copyright © Inc. by 2000 Springer-Verlag New York
Life Sciences; Biochemistry, general; Human Physiology
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial