Properties of gel polymer electrolytes based on poly(butyl acrylate) semi-interpenetrating polymeric networks toward Li-ion batteries

Properties of gel polymer electrolytes based on poly(butyl acrylate) semi-interpenetrating... A new type of gel polymer electrolyte (GPE) based on poly(butyl acrylate) (PBA) semi-interpenetrating polymer networks (IPNs) and polyvinylidene fluoride (PVDF) was prepared in different molar ratios ranging from 1:0.5 to 1:1. A series of structure characterizations of PBA/PVDF had been measured using FTIR, XRD, and SEM. The electrolyte uptake test revealed that when the semi-IPNs were swollen with the commercial liquid electrolyte solutions, they showed an outstanding electrolyte uptake of 120% with a chemically cross-linked structure. All results indicated that the GPE exhibited the best performance when the molar ratio of BA and PVDF was 1:0.5. The prototype cell assembled with LiFePO4 as cathode, lithium metal as anode, and GPE as the electrolyte as well as separator retained 94% of its initial specific capacity after 100 charge-discharge cycles, showing an excellent cycling stability and a high electrochemical window (up to 4.5 V against Li+/Li) at room temperature. Compared with the liquid electrolyte, the GPE exhibited a similar stable cycling performance and was suitable for practical application in Li-ion batteries. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ionics Springer Journals

Properties of gel polymer electrolytes based on poly(butyl acrylate) semi-interpenetrating polymeric networks toward Li-ion batteries

Loading next page...
 
/lp/springer_journal/properties-of-gel-polymer-electrolytes-based-on-poly-butyl-acrylate-3H2ddxz9xb
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Chemistry; Electrochemistry; Renewable and Green Energy; Optical and Electronic Materials; Condensed Matter Physics; Energy Storage
ISSN
0947-7047
eISSN
1862-0760
D.O.I.
10.1007/s11581-017-2083-0
Publisher site
See Article on Publisher Site

Abstract

A new type of gel polymer electrolyte (GPE) based on poly(butyl acrylate) (PBA) semi-interpenetrating polymer networks (IPNs) and polyvinylidene fluoride (PVDF) was prepared in different molar ratios ranging from 1:0.5 to 1:1. A series of structure characterizations of PBA/PVDF had been measured using FTIR, XRD, and SEM. The electrolyte uptake test revealed that when the semi-IPNs were swollen with the commercial liquid electrolyte solutions, they showed an outstanding electrolyte uptake of 120% with a chemically cross-linked structure. All results indicated that the GPE exhibited the best performance when the molar ratio of BA and PVDF was 1:0.5. The prototype cell assembled with LiFePO4 as cathode, lithium metal as anode, and GPE as the electrolyte as well as separator retained 94% of its initial specific capacity after 100 charge-discharge cycles, showing an excellent cycling stability and a high electrochemical window (up to 4.5 V against Li+/Li) at room temperature. Compared with the liquid electrolyte, the GPE exhibited a similar stable cycling performance and was suitable for practical application in Li-ion batteries.

Journal

IonicsSpringer Journals

Published: Apr 3, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off