Propene adsorption and reaction on zeolites and pillared clays

Propene adsorption and reaction on zeolites and pillared clays Comparative IR and UV-Vis spectroscopic studies of propene adsorption and reaction on H-mordenite, dealuminated H-mordenite, dealuminated mazzite, montmorillonite and Al13-pillared montmorillonite have been carried out. On all systems propene is first transformed into polymeric species (CnH2n+1 +). On HMOR (both as such and dealuminated), allylic carbocations are successively produced by loss of H2, the monoenic species (CnH2n−1 +) being formed at room temperature and the dienic (CnH2n−3 +) and trienic (CnH2n−5 +) species at higher temperatures. These species are not observed on the other systems, although they are presumably formed as unstable intermediates. In fact, on all the zeolites studied here two cyclic penta-atomic and hexa-atomic allylic carbocations have been observed for the first time. On all systems, the final products of reaction are polyaromatic species which, on the basis of their reaction with NH3 still exhibit unsaturated carbocation behaviour. The activity of the various samples depends on their pore dimensions and on the nature of acidic sites involved: the larger the available pore space, the more branched is the polymer and the more difficult it is to observe allylic carbocations. Evidence is provided for a Brønsted-induced mechanism. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Propene adsorption and reaction on zeolites and pillared clays

Loading next page...
 
/lp/springer_journal/propene-adsorption-and-reaction-on-zeolites-and-pillared-clays-utahgZfN6x
Publisher
Springer Netherlands
Copyright
Copyright © 1999 by Springer
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856799X00419
Publisher site
See Article on Publisher Site

Abstract

Comparative IR and UV-Vis spectroscopic studies of propene adsorption and reaction on H-mordenite, dealuminated H-mordenite, dealuminated mazzite, montmorillonite and Al13-pillared montmorillonite have been carried out. On all systems propene is first transformed into polymeric species (CnH2n+1 +). On HMOR (both as such and dealuminated), allylic carbocations are successively produced by loss of H2, the monoenic species (CnH2n−1 +) being formed at room temperature and the dienic (CnH2n−3 +) and trienic (CnH2n−5 +) species at higher temperatures. These species are not observed on the other systems, although they are presumably formed as unstable intermediates. In fact, on all the zeolites studied here two cyclic penta-atomic and hexa-atomic allylic carbocations have been observed for the first time. On all systems, the final products of reaction are polyaromatic species which, on the basis of their reaction with NH3 still exhibit unsaturated carbocation behaviour. The activity of the various samples depends on their pore dimensions and on the nature of acidic sites involved: the larger the available pore space, the more branched is the polymer and the more difficult it is to observe allylic carbocations. Evidence is provided for a Brønsted-induced mechanism.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Apr 15, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off