Propagation of wall pressure perturbations in a large aspect ratio shallow cavity

Propagation of wall pressure perturbations in a large aspect ratio shallow cavity Wall pressure fluctuations generated by turbulent boundary layers over a shallow cavity are studied experimentally in a low-speed wind tunnel facility. The scope of the present work is to characterize the propagation of the pressure perturbations at the wall by means of pressure cross-correlations and cross-spectra measured through a microphone pair translated along the cavity floor. It is found that the mechanism characterizing the pressure propagation close to the backward facing step and in the middle of the cavity is similar to what is commonly observed in equilibrium boundary layer being the convection velocity smaller than the external mean velocity. On the other hand, in the close vicinity of the forward-step, the hydrodynamic contribution of the pressure fluctuations is accompanied by a relevant acoustic effect characterized by a convection velocity close to the speed of sound. Furthermore, in the regions close to the two steps, the spectral decay of the coherence function, even though of exponential type, is faster than that obtained in the quasi-equilibrium region. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Propagation of wall pressure perturbations in a large aspect ratio shallow cavity

Loading next page...
 
/lp/springer_journal/propagation-of-wall-pressure-perturbations-in-a-large-aspect-ratio-v5rnYJHYg6
Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-005-0101-x
Publisher site
See Article on Publisher Site

Abstract

Wall pressure fluctuations generated by turbulent boundary layers over a shallow cavity are studied experimentally in a low-speed wind tunnel facility. The scope of the present work is to characterize the propagation of the pressure perturbations at the wall by means of pressure cross-correlations and cross-spectra measured through a microphone pair translated along the cavity floor. It is found that the mechanism characterizing the pressure propagation close to the backward facing step and in the middle of the cavity is similar to what is commonly observed in equilibrium boundary layer being the convection velocity smaller than the external mean velocity. On the other hand, in the close vicinity of the forward-step, the hydrodynamic contribution of the pressure fluctuations is accompanied by a relevant acoustic effect characterized by a convection velocity close to the speed of sound. Furthermore, in the regions close to the two steps, the spectral decay of the coherence function, even though of exponential type, is faster than that obtained in the quasi-equilibrium region.

Journal

Experiments in FluidsSpringer Journals

Published: Jan 13, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off