Propagation of Underwater Noise from an Offshore Seismic Survey in Australia to Antarctica: Measurements and Modelling

Propagation of Underwater Noise from an Offshore Seismic Survey in Australia to Antarctica:... An offshore seismic survey was conducted over the western edge of the continental shelf in Bass Strait in 2006. Underwater noise from this survey was recorded on an autonomous sound recorder deployed in the Southern Ocean on the Antarctic continental slope. Sound emission and propagation models were verified by experimental measurements using parameters and position of the airgun array and characteristics of the underwater sound channel. A parabolic equation approximation method was used to calculate the sound field over the continental slope of Australia, and then, a normal mode model was employed to account for the transmission loss due to sound scattering by surface waves south of the polar front. The numerical predictions are consistent with the measurement results within a few dBs for the sound exposure and energy spectral density levels. It is also demonstrated by measurements and modelling that the best coupling of a near-surface sound source with the deep underwater sound channel takes place when the source is located over the continental slope at a sea depth of about half of the channel’s axis depth. The model can be used to predict masking effects of man-made underwater noise on the communication environment of marine mammals in Antarctica. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Acoustics Australia Springer Journals

Propagation of Underwater Noise from an Offshore Seismic Survey in Australia to Antarctica: Measurements and Modelling

Loading next page...
 
/lp/springer_journal/propagation-of-underwater-noise-from-an-offshore-seismic-survey-in-mcv5H1Ch59
Publisher
Springer Singapore
Copyright
Copyright © 2018 by Australian Acoustical Society
Subject
Engineering; Engineering Acoustics; Acoustics; Noise Control
ISSN
0814-6039
eISSN
1839-2571
D.O.I.
10.1007/s40857-018-0131-1
Publisher site
See Article on Publisher Site

Abstract

An offshore seismic survey was conducted over the western edge of the continental shelf in Bass Strait in 2006. Underwater noise from this survey was recorded on an autonomous sound recorder deployed in the Southern Ocean on the Antarctic continental slope. Sound emission and propagation models were verified by experimental measurements using parameters and position of the airgun array and characteristics of the underwater sound channel. A parabolic equation approximation method was used to calculate the sound field over the continental slope of Australia, and then, a normal mode model was employed to account for the transmission loss due to sound scattering by surface waves south of the polar front. The numerical predictions are consistent with the measurement results within a few dBs for the sound exposure and energy spectral density levels. It is also demonstrated by measurements and modelling that the best coupling of a near-surface sound source with the deep underwater sound channel takes place when the source is located over the continental slope at a sea depth of about half of the channel’s axis depth. The model can be used to predict masking effects of man-made underwater noise on the communication environment of marine mammals in Antarctica.

Journal

Acoustics AustraliaSpringer Journals

Published: Apr 16, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off