Propagation of shear-layer structures in the near-wall region of a turbulent boundary layer

Propagation of shear-layer structures in the near-wall region of a turbulent boundary layer Two non-intrusive techniques, namely laser Doppler anemometry (LDA) and the electrochemical method, have been used for simultaneous measurements of the instantaneous streamwise velocity (U) and longitudinal wall shear stress (S), evaluated in a zero pressure gradient turbulent boundary layer. The space–time correlation between the fluctuating velocity and shear stress suggests that the coherent flow structures are propagated (i) under a slight angle of 5° in the near-wall region and (ii) at an average angle of 15.5° for y +>30. It is shown that the time shift obtained from the correlation between the LDA and the electrochemical signals is due to the dynamic behaviour of the electrodiffusion probe, but also to the leaning character of the coherent structures. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Propagation of shear-layer structures in the near-wall region of a turbulent boundary layer

Loading next page...
 
/lp/springer_journal/propagation-of-shear-layer-structures-in-the-near-wall-region-of-a-T460llAJIC
Publisher
Springer-Verlag
Copyright
Copyright © 2002 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-002-0519-3
Publisher site
See Article on Publisher Site

Abstract

Two non-intrusive techniques, namely laser Doppler anemometry (LDA) and the electrochemical method, have been used for simultaneous measurements of the instantaneous streamwise velocity (U) and longitudinal wall shear stress (S), evaluated in a zero pressure gradient turbulent boundary layer. The space–time correlation between the fluctuating velocity and shear stress suggests that the coherent flow structures are propagated (i) under a slight angle of 5° in the near-wall region and (ii) at an average angle of 15.5° for y +>30. It is shown that the time shift obtained from the correlation between the LDA and the electrochemical signals is due to the dynamic behaviour of the electrodiffusion probe, but also to the leaning character of the coherent structures.

Journal

Experiments in FluidsSpringer Journals

Published: Nov 19, 2002

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off