Promoter recognition by a cyanobacterial RNA polymerase: in vitro studies with the Calothrix sp. PCC 7601 transcriptional factors RcaA and RcaD

Promoter recognition by a cyanobacterial RNA polymerase: in vitro studies with the Calothrix sp.... To study the transcriptional apparatus and the mechanisms that control gene expression in cyanobacteria, the RNA polymerase was purified from the filamentous Calothrix sp. PCC 7601 and used in in vitro transcription assays. Conditions required for specific transcription initiation to occur were analyzed with the eleven Calothrix PCC 7601 genes for which the 5′ ends have been mapped. Most of the transcripts directly obtained did not have the expected size, providing a test for looking at specific transcription factors. Addition of RcaA, a protein that binds to the promoter region of the phycobiliprotein cpeBA operon, restored accurate initiation of transcription in the in vitro system for three phycobiliprotein promoters. RcaA thus is a transcription factor that allows to mimick in vivo transcription. In parallel, the functional properties of the Escherichia coli and cyanobacterial RNA polymerases were compared. The enteric enzyme could not precisely initiate transcription at the promoter of a phycobiliprotein gene and, reciprocally, the cyanobacterial RNA polymerase could initiate transcription at PlacUV5, but not from wild-type Plac promoters. The different behaviours of the enzymes are discussed in the light of the structural differences that exist between subunits of the RNA polymerases. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Promoter recognition by a cyanobacterial RNA polymerase: in vitro studies with the Calothrix sp. PCC 7601 transcriptional factors RcaA and RcaD

Loading next page...
 
/lp/springer_journal/promoter-recognition-by-a-cyanobacterial-rna-polymerase-in-vitro-j9mKCT2agm
Publisher
Springer Journals
Copyright
Copyright © 1998 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005983320006
Publisher site
See Article on Publisher Site

Abstract

To study the transcriptional apparatus and the mechanisms that control gene expression in cyanobacteria, the RNA polymerase was purified from the filamentous Calothrix sp. PCC 7601 and used in in vitro transcription assays. Conditions required for specific transcription initiation to occur were analyzed with the eleven Calothrix PCC 7601 genes for which the 5′ ends have been mapped. Most of the transcripts directly obtained did not have the expected size, providing a test for looking at specific transcription factors. Addition of RcaA, a protein that binds to the promoter region of the phycobiliprotein cpeBA operon, restored accurate initiation of transcription in the in vitro system for three phycobiliprotein promoters. RcaA thus is a transcription factor that allows to mimick in vivo transcription. In parallel, the functional properties of the Escherichia coli and cyanobacterial RNA polymerases were compared. The enteric enzyme could not precisely initiate transcription at the promoter of a phycobiliprotein gene and, reciprocally, the cyanobacterial RNA polymerase could initiate transcription at PlacUV5, but not from wild-type Plac promoters. The different behaviours of the enzymes are discussed in the light of the structural differences that exist between subunits of the RNA polymerases.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 6, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off