Promiscuous and specific phospholipid binding by domains in ZAC, a membrane-associated Arabidopsis protein with an ARF GAP zinc finger and a C2 domain

Promiscuous and specific phospholipid binding by domains in ZAC, a membrane-associated... Arabidopsis proteins were predicted which share an 80 residue zinc finger domain known from ADP-ribosylation factor GTPase-activating proteins (ARF GAPs). One of these is a 37 kDa protein, designated ZAC, which has a novel domain structure in which the N-terminal ARF GAP domain and a C-terminal C2 domain are separated by a region without homology to other known proteins. Zac promoter/β-glucuronidase reporter assays revealed highest expression levels in flowering tissue, rosettes and roots. ZAC protein was immuno-detected mainly in association with membranes and fractionated with Golgi and plasma membrane marker proteins. ZAC membrane association was confirmed in assays by a fusion between ZAC and the green fluorescence protein and prompted an analysis of the in vitro phospholipid-binding ability of ZAC. Phospholipid dot-blot and liposome-binding assays indicated that fusion proteins containing the ZAC-C2 domain bind anionic phospholipids non-specifically, with some variance in Ca2+ and salt dependence. Similar assays demonstrated specific affinity of the ZAC N-terminal region (residues 1–174) for phosphatidylinositol 3-monophosphate (PI-3-P). Binding was dependent in part on an intact zinc finger motif, but proteins containing only the zinc finger domain (residues 1–105) did not bind PI-3-P. Recombinant ZAC possessed GTPase-activating activity on Arabidopsis ARF proteins. These data identify a novel PI-3-P-binding protein region and thereby provide evidence that this phosphoinositide is recognized as a signal in plants. A role for ZAC in the regulation of ARF-mediated vesicular transport in plants is discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Promiscuous and specific phospholipid binding by domains in ZAC, a membrane-associated Arabidopsis protein with an ARF GAP zinc finger and a C2 domain

Loading next page...
 
/lp/springer_journal/promiscuous-and-specific-phospholipid-binding-by-domains-in-zac-a-82qcWTylRT
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2000 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1026509002161
Publisher site
See Article on Publisher Site

Abstract

Arabidopsis proteins were predicted which share an 80 residue zinc finger domain known from ADP-ribosylation factor GTPase-activating proteins (ARF GAPs). One of these is a 37 kDa protein, designated ZAC, which has a novel domain structure in which the N-terminal ARF GAP domain and a C-terminal C2 domain are separated by a region without homology to other known proteins. Zac promoter/β-glucuronidase reporter assays revealed highest expression levels in flowering tissue, rosettes and roots. ZAC protein was immuno-detected mainly in association with membranes and fractionated with Golgi and plasma membrane marker proteins. ZAC membrane association was confirmed in assays by a fusion between ZAC and the green fluorescence protein and prompted an analysis of the in vitro phospholipid-binding ability of ZAC. Phospholipid dot-blot and liposome-binding assays indicated that fusion proteins containing the ZAC-C2 domain bind anionic phospholipids non-specifically, with some variance in Ca2+ and salt dependence. Similar assays demonstrated specific affinity of the ZAC N-terminal region (residues 1–174) for phosphatidylinositol 3-monophosphate (PI-3-P). Binding was dependent in part on an intact zinc finger motif, but proteins containing only the zinc finger domain (residues 1–105) did not bind PI-3-P. Recombinant ZAC possessed GTPase-activating activity on Arabidopsis ARF proteins. These data identify a novel PI-3-P-binding protein region and thereby provide evidence that this phosphoinositide is recognized as a signal in plants. A role for ZAC in the regulation of ARF-mediated vesicular transport in plants is discussed.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 16, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off