Prolonged Growth of Young Spruce (Picea koraiensis Nakai) Plants at Double Atmospheric CO2 Concentration Stimulates the Preferential Growth of Thick Roots

Prolonged Growth of Young Spruce (Picea koraiensis Nakai) Plants at Double Atmospheric CO2... Two-year-old young spruce (Picea koraiensis Nakai) plants were grown in a climatic chamber during three summer months at double atmospheric CO2 concentration, sufficient content of soil inorganic nitrogen, and diurnal variation of temperature and illuminance, which simulate natural growth conditions. The control plants were grown in another climatic chamber under the same conditions, but at atmospheric CO2 concentration (350 ppm). CO2 exchange was measured with a Li-Cor 6400 infra-red gas analyzer in attached leaves placed in a climatic chamber in the morning under growth conditions and saturating light 1200 µE/(m2 s) in June, July, and August. In addition, dry weights of needles, leafless shoot parts of plant, fraction of thick (more than 0.5 mm in diameter) and thin (less than 0.5 mm in diameter) roots were recorded. The data were used to plot CO2 exchange rates as a function of carbon dioxide concentration and to calculate the increment of shoot and root phytomass. The maximum gas exchange rates in the treated and control plants similarly depended on CO2 concentration. The slope of the CO2 dependence curve, which corresponded to the kinetic characteristic V m /K M of photosynthetic carboxylation, increased monotonically during the experiment. To the end of observation period, the proportion of thick roots in plant phytomass significantly increased in the plants grown at double atmospheric CO2 concentration, as compared to the control plants. Thus, the increase in the rate of photosynthetic gas exchange in plants grown for three months at double atmospheric CO2 concentration was only due to the increase in CO2, the substrate of Rubisco carboxylation activity. We found no differences in the CO2 characteristic for Rubisco between the treated and control plants. The ratio of needle to thin roots in the treated and control plants was similar and did not change during the experiment. The excess of photoassimilates in the treated, as compared to the control plants, was preferentially used for thick root growth. This result shows that photosynthesis in young spruce forests can deposit excess atmospheric CO2 in the soil horizon in the form of thick root phytomass. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Prolonged Growth of Young Spruce (Picea koraiensis Nakai) Plants at Double Atmospheric CO2 Concentration Stimulates the Preferential Growth of Thick Roots

Loading next page...
 
/lp/springer_journal/prolonged-growth-of-young-spruce-picea-koraiensis-nakai-plants-at-LW9HjRLGCD
Publisher
Springer Journals
Copyright
Copyright © 2005 by MAIK "Nauka/Interperiodica"
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1007/s11183-005-0097-3
Publisher site
See Article on Publisher Site

Abstract

Two-year-old young spruce (Picea koraiensis Nakai) plants were grown in a climatic chamber during three summer months at double atmospheric CO2 concentration, sufficient content of soil inorganic nitrogen, and diurnal variation of temperature and illuminance, which simulate natural growth conditions. The control plants were grown in another climatic chamber under the same conditions, but at atmospheric CO2 concentration (350 ppm). CO2 exchange was measured with a Li-Cor 6400 infra-red gas analyzer in attached leaves placed in a climatic chamber in the morning under growth conditions and saturating light 1200 µE/(m2 s) in June, July, and August. In addition, dry weights of needles, leafless shoot parts of plant, fraction of thick (more than 0.5 mm in diameter) and thin (less than 0.5 mm in diameter) roots were recorded. The data were used to plot CO2 exchange rates as a function of carbon dioxide concentration and to calculate the increment of shoot and root phytomass. The maximum gas exchange rates in the treated and control plants similarly depended on CO2 concentration. The slope of the CO2 dependence curve, which corresponded to the kinetic characteristic V m /K M of photosynthetic carboxylation, increased monotonically during the experiment. To the end of observation period, the proportion of thick roots in plant phytomass significantly increased in the plants grown at double atmospheric CO2 concentration, as compared to the control plants. Thus, the increase in the rate of photosynthetic gas exchange in plants grown for three months at double atmospheric CO2 concentration was only due to the increase in CO2, the substrate of Rubisco carboxylation activity. We found no differences in the CO2 characteristic for Rubisco between the treated and control plants. The ratio of needle to thin roots in the treated and control plants was similar and did not change during the experiment. The excess of photoassimilates in the treated, as compared to the control plants, was preferentially used for thick root growth. This result shows that photosynthesis in young spruce forests can deposit excess atmospheric CO2 in the soil horizon in the form of thick root phytomass.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Sep 28, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off