Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Proline protects Atropa belladonna plants against nickel salt toxicity

Proline protects Atropa belladonna plants against nickel salt toxicity Atropa belladonna L. plants were grown in water culture for 8 weeks before the nutrient medium was supplemented with NiCl2 to final concentrations of 0 (control treatment), 50, 100, 150, 200, 250, and 300 μM. After 4 days of plant growing in the presence of nickel chloride, the content of water, proline, Ni, Fe, free polyamines, as well as lipid peroxidation rates were measured. The addition of 100–150 μM Ni to the medium significantly reduced the fresh weight increments and water content in comparison with these parameters for untreated plants; 200 μM Ni caused serious, although nonlethal damage to the plants, whereas 250 and 300 μM Ni proved to be lethal. In the aboveground organs, the major part of Ni was accumulated in the apical leaves. When the plants were treated with 200 μM Ni, the Ni content in apical leaves was 220 μg/g dry wt, while Ni content in roots reached 1500 μg/g dry wt. The treatment of plants with proline in the presence of 200 μM Ni inhibited Ni accumulation in tissues. The proline-treated plants exhibited elevated iron content in leaves and especially in roots and were characterized by comparatively low rates of lipid peroxidation and by sustained leaf water status. When 200 μM Ni was applied, the content of free putrescine decreased, while the contents of spermine and spermidine in leaves increased appreciably with respect to the control values. The toxic effect of nickel was accompanied not only by an enhanced accumulation of high- molecular-weight polyamines but also by their oxidative degradation, which was evident from the 14-fold increase in the content of 1,3-diaminopropane. The protective effect of exogenous proline in the presence of high nickel concentrations was manifested in lowered lipid peroxidation rates, alleviation of iron deficiency, and in retarded oxidative degradation of polyamines. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Proline protects Atropa belladonna plants against nickel salt toxicity

Loading next page...
1
 
/lp/springer_journal/proline-protects-atropa-belladonna-plants-against-nickel-salt-toxicity-DGgdQmMXvA

References (36)

Publisher
Springer Journals
Copyright
Copyright © 2011 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Sciences ; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
DOI
10.1134/S102144371102021X
Publisher site
See Article on Publisher Site

Abstract

Atropa belladonna L. plants were grown in water culture for 8 weeks before the nutrient medium was supplemented with NiCl2 to final concentrations of 0 (control treatment), 50, 100, 150, 200, 250, and 300 μM. After 4 days of plant growing in the presence of nickel chloride, the content of water, proline, Ni, Fe, free polyamines, as well as lipid peroxidation rates were measured. The addition of 100–150 μM Ni to the medium significantly reduced the fresh weight increments and water content in comparison with these parameters for untreated plants; 200 μM Ni caused serious, although nonlethal damage to the plants, whereas 250 and 300 μM Ni proved to be lethal. In the aboveground organs, the major part of Ni was accumulated in the apical leaves. When the plants were treated with 200 μM Ni, the Ni content in apical leaves was 220 μg/g dry wt, while Ni content in roots reached 1500 μg/g dry wt. The treatment of plants with proline in the presence of 200 μM Ni inhibited Ni accumulation in tissues. The proline-treated plants exhibited elevated iron content in leaves and especially in roots and were characterized by comparatively low rates of lipid peroxidation and by sustained leaf water status. When 200 μM Ni was applied, the content of free putrescine decreased, while the contents of spermine and spermidine in leaves increased appreciably with respect to the control values. The toxic effect of nickel was accompanied not only by an enhanced accumulation of high- molecular-weight polyamines but also by their oxidative degradation, which was evident from the 14-fold increase in the content of 1,3-diaminopropane. The protective effect of exogenous proline in the presence of high nickel concentrations was manifested in lowered lipid peroxidation rates, alleviation of iron deficiency, and in retarded oxidative degradation of polyamines.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Mar 12, 2011

There are no references for this article.