Progressive evaluation of nested aggregate queries

Progressive evaluation of nested aggregate queries In many decision-making scenarios, decision makers require rapid feedback to their queries, which typically involve aggregates. The traditional blocking execution model can no longer meet the demands of these users. One promising approach in the literature, called online aggregation, evaluates an aggregation query progressively as follows: as soon as certain data have been evaluated, approximate answers are produced with their respective running confidence intervals; as more data are examined, the answers and their corresponding running confidence intervals are refined. In this paper, we extend this approach to handle nested queries with aggregates (i.e., at least one inner query block is an aggregate query) by providing users with (approximate) answers progressively as the inner aggregation query blocks are evaluated. We address the new issues pose by nested queries. In particular, the answer space begins with a superset of the final answers and is refined as the aggregates from the inner query blocks are refined. For the intermediary answers to be meaningful, they have to be interpreted with the aggregates from the inner queries. We also propose a multi-threaded model in evaluating such queries: each query block is assigned to a thread, and the threads can be evaluated concurrently and independently. The time slice across the threads is nondeterministic in the sense that the user controls the relative rate at which these subqueries are being evaluated. For enumerative nested queries, we propose a priority-based evaluation strategy to present answers that are certainly in the final answer space first, before presenting those whose validity may be affected as the inner query aggregates are refined. We implemented a prototype system using Java and evaluated our system. Results for nested queries with a level and multiple levels of nesting are reported. Our results show the effectiveness of the proposed mechanisms in providing progressive feedback that reduces the initial waiting time of users significantly without sacrificing the quality of the answers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Progressive evaluation of nested aggregate queries

Loading next page...
 
/lp/springer_journal/progressive-evaluation-of-nested-aggregate-queries-Q11sGVRqza
Publisher
Springer-Verlag
Copyright
Copyright © 2000 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s007780000026
Publisher site
See Article on Publisher Site

Abstract

In many decision-making scenarios, decision makers require rapid feedback to their queries, which typically involve aggregates. The traditional blocking execution model can no longer meet the demands of these users. One promising approach in the literature, called online aggregation, evaluates an aggregation query progressively as follows: as soon as certain data have been evaluated, approximate answers are produced with their respective running confidence intervals; as more data are examined, the answers and their corresponding running confidence intervals are refined. In this paper, we extend this approach to handle nested queries with aggregates (i.e., at least one inner query block is an aggregate query) by providing users with (approximate) answers progressively as the inner aggregation query blocks are evaluated. We address the new issues pose by nested queries. In particular, the answer space begins with a superset of the final answers and is refined as the aggregates from the inner query blocks are refined. For the intermediary answers to be meaningful, they have to be interpreted with the aggregates from the inner queries. We also propose a multi-threaded model in evaluating such queries: each query block is assigned to a thread, and the threads can be evaluated concurrently and independently. The time slice across the threads is nondeterministic in the sense that the user controls the relative rate at which these subqueries are being evaluated. For enumerative nested queries, we propose a priority-based evaluation strategy to present answers that are certainly in the final answer space first, before presenting those whose validity may be affected as the inner query aggregates are refined. We implemented a prototype system using Java and evaluated our system. Results for nested queries with a level and multiple levels of nesting are reported. Our results show the effectiveness of the proposed mechanisms in providing progressive feedback that reduces the initial waiting time of users significantly without sacrificing the quality of the answers.

Journal

The VLDB JournalSpringer Journals

Published: Dec 1, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off