Programmed cell death in the pathogenesis of rabbit hemorrhagic disease

Programmed cell death in the pathogenesis of rabbit hemorrhagic disease Rabbit hemorrhagic disease is a rapidly lethal infection caused by a calicivirus, characterized by acute liver damage and disseminated intravascular coagulation (DIC). Following morphological criteria and using a specific in situ labeling technique, we have found that liver cell death induced upon infection is due to apoptosis, and that programmed cell death is a constant feature in rabbits experimentally infected with RHDV. The process affected mainly hepatocytes, but also macrophages and endothelial cells presented morphologic hallmarks of apoptosis, expressing all these cell types viral antigens as determined by immunohistochemistry. The occurrence of programmed cell death was correlated with the appearance of the RHDV induced pathology in tissues by DNA fragmentation detection in situ. Hepatocyte apoptosis produced extensive parenchymal destruction causing a lethal, acute fulminant hepatitis that is characteristic of RHD. Apoptosis of intravascular monocytes and endothelial cells was observed together with fibrin thrombi in blood vessels. Since apoptotic cells are known sites of enhanced procoagulant activity, apoptosis of these cell populations might constitute a first step in the pathogenesis of DIC and a common pathway to other viral hemorrhagic fevers. In conclusion, apoptosis in RHD may be determinant in the development of the pathogenesis of this disease. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Programmed cell death in the pathogenesis of rabbit hemorrhagic disease

Loading next page...
 
/lp/springer_journal/programmed-cell-death-in-the-pathogenesis-of-rabbit-hemorrhagic-0LZI59MT4w
Publisher
Springer-Verlag
Copyright
Copyright © Wien by 1998 Springer-Verlag/
Subject
Legacy
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s007050050289
Publisher site
See Article on Publisher Site

Abstract

Rabbit hemorrhagic disease is a rapidly lethal infection caused by a calicivirus, characterized by acute liver damage and disseminated intravascular coagulation (DIC). Following morphological criteria and using a specific in situ labeling technique, we have found that liver cell death induced upon infection is due to apoptosis, and that programmed cell death is a constant feature in rabbits experimentally infected with RHDV. The process affected mainly hepatocytes, but also macrophages and endothelial cells presented morphologic hallmarks of apoptosis, expressing all these cell types viral antigens as determined by immunohistochemistry. The occurrence of programmed cell death was correlated with the appearance of the RHDV induced pathology in tissues by DNA fragmentation detection in situ. Hepatocyte apoptosis produced extensive parenchymal destruction causing a lethal, acute fulminant hepatitis that is characteristic of RHD. Apoptosis of intravascular monocytes and endothelial cells was observed together with fibrin thrombi in blood vessels. Since apoptotic cells are known sites of enhanced procoagulant activity, apoptosis of these cell populations might constitute a first step in the pathogenesis of DIC and a common pathway to other viral hemorrhagic fevers. In conclusion, apoptosis in RHD may be determinant in the development of the pathogenesis of this disease.

Journal

Archives of VirologySpringer Journals

Published: Feb 1, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off