Profiling the Expression of Genes Controlling Rice Grain Quality

Profiling the Expression of Genes Controlling Rice Grain Quality Rice provides a staple source of energy, protein and other nutrients to half of the world population. Over 90 of the rice seeds consists of starch and protein by dry weight. The quantity and property of starch and protein thus play a dominant role in the yield and quality of rice. The amylase content of starch is a determining factor in the eating and cooking quality while the amount and essential amino acids balance of storage proteins affect the nutritional quality of rice. In China, the super-hybrid rice currently under the last phase of development has a 35 yield advantage over the best inbred rice varieties. However, its grain quality needs further improvement. This study reported the expression patterns of 44 genes participating in starch, storage protein, and lysine synthesis in the developing rice grain. Field grown rice cultivar 9311, the paternal line of an elite super-hybrid rice LYP9with its draft genomic sequence released, was used as plant material. Results revealed diverse yet coordinated expression profiles of the genes involved in the three pathways which lead to the final composition and property of starch, protein and lysine that determine the quality of rice, providing useful information for rice quality improvement. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Profiling the Expression of Genes Controlling Rice Grain Quality

Loading next page...
 
/lp/springer_journal/profiling-the-expression-of-genes-controlling-rice-grain-quality-jaawZGunk1
Publisher
Springer Journals
Copyright
Copyright © 2005 by Springer
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-004-7507-3
Publisher site
See Article on Publisher Site

Abstract

Rice provides a staple source of energy, protein and other nutrients to half of the world population. Over 90 of the rice seeds consists of starch and protein by dry weight. The quantity and property of starch and protein thus play a dominant role in the yield and quality of rice. The amylase content of starch is a determining factor in the eating and cooking quality while the amount and essential amino acids balance of storage proteins affect the nutritional quality of rice. In China, the super-hybrid rice currently under the last phase of development has a 35 yield advantage over the best inbred rice varieties. However, its grain quality needs further improvement. This study reported the expression patterns of 44 genes participating in starch, storage protein, and lysine synthesis in the developing rice grain. Field grown rice cultivar 9311, the paternal line of an elite super-hybrid rice LYP9with its draft genomic sequence released, was used as plant material. Results revealed diverse yet coordinated expression profiles of the genes involved in the three pathways which lead to the final composition and property of starch, protein and lysine that determine the quality of rice, providing useful information for rice quality improvement.

Journal

Plant Molecular BiologySpringer Journals

Published: Dec 10, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off