Profiling relational data: a survey

Profiling relational data: a survey Profiling data to determine metadata about a given dataset is an important and frequent activity of any IT professional and researcher and is necessary for various use-cases. It encompasses a vast array of methods to examine datasets and produce metadata. Among the simpler results are statistics, such as the number of null values and distinct values in a column, its data type, or the most frequent patterns of its data values. Metadata that are more difficult to compute involve multiple columns, namely correlations, unique column combinations, functional dependencies, and inclusion dependencies. Further techniques detect conditional properties of the dataset at hand. This survey provides a classification of data profiling tasks and comprehensively reviews the state of the art for each class. In addition, we review data profiling tools and systems from research and industry. We conclude with an outlook on the future of data profiling beyond traditional profiling tasks and beyond relational databases. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Profiling relational data: a survey

Loading next page...
 
/lp/springer_journal/profiling-relational-data-a-survey-KQ6T0bRd8Y
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-015-0389-y
Publisher site
See Article on Publisher Site

Abstract

Profiling data to determine metadata about a given dataset is an important and frequent activity of any IT professional and researcher and is necessary for various use-cases. It encompasses a vast array of methods to examine datasets and produce metadata. Among the simpler results are statistics, such as the number of null values and distinct values in a column, its data type, or the most frequent patterns of its data values. Metadata that are more difficult to compute involve multiple columns, namely correlations, unique column combinations, functional dependencies, and inclusion dependencies. Further techniques detect conditional properties of the dataset at hand. This survey provides a classification of data profiling tasks and comprehensively reviews the state of the art for each class. In addition, we review data profiling tools and systems from research and industry. We conclude with an outlook on the future of data profiling beyond traditional profiling tasks and beyond relational databases.

Journal

The VLDB JournalSpringer Journals

Published: Jun 2, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off