Profiling Lung Cancer Patients Using Electronic Health Records

Profiling Lung Cancer Patients Using Electronic Health Records If Electronic Health Records contain a large amount of information about the patient’s condition and response to treatment, which can potentially revolutionize the clinical practice, such information is seldom considered due to the complexity of its extraction and analysis. We here report on a first integration of an NLP framework for the analysis of clinical records of lung cancer patients making use of a telephone assistance service of a major Spanish hospital. We specifically show how some relevant data, about patient demographics and health condition, can be extracted; and how some relevant analyses can be performed, aimed at improving the usefulness of the service. We thus demonstrate that the use of EHR texts, and their integration inside a data analysis framework, is technically feasible and worth of further study. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Medical Systems Springer Journals
Loading next page...
 
/lp/springer_journal/profiling-lung-cancer-patients-using-electronic-health-records-1vkf3Tjb6j
Publisher
Springer US
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Medicine & Public Health; Health Informatics; Health Informatics; Statistics for Life Sciences, Medicine, Health Sciences
ISSN
0148-5598
eISSN
1573-689X
D.O.I.
10.1007/s10916-018-0975-9
Publisher site
See Article on Publisher Site

Abstract

If Electronic Health Records contain a large amount of information about the patient’s condition and response to treatment, which can potentially revolutionize the clinical practice, such information is seldom considered due to the complexity of its extraction and analysis. We here report on a first integration of an NLP framework for the analysis of clinical records of lung cancer patients making use of a telephone assistance service of a major Spanish hospital. We specifically show how some relevant data, about patient demographics and health condition, can be extracted; and how some relevant analyses can be performed, aimed at improving the usefulness of the service. We thus demonstrate that the use of EHR texts, and their integration inside a data analysis framework, is technically feasible and worth of further study.

Journal

Journal of Medical SystemsSpringer Journals

Published: May 31, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off