Productivity of soybean-rhizobium symbiosis after modification of root nodule bacteria activity with exogenous proteins

Productivity of soybean-rhizobium symbiosis after modification of root nodule bacteria activity... Plant growth experiments were conducted to assess symbiotic efficiency, photosynthetic rates, and the development of soybean (Glycine max (L.) Merrill) seedlings after seed inoculation with active and inactive strains of root nodule bacteria Bradyrhizobium japonicum preincubated in the presence homologous and heterologous proteins. The properties of active and inactive symbiotic strains were differentially modulated by homologous soybean lectin, which had a marked influence on plant physiological condition. The incubation of active rhizobia with a homologous lectin, i.e., lectin of the respective plant, increased the nitrogen-fixing activity of nodules and, consequently, elevated photosynthetic rates and weight increments in soybean plants. At the same time, the homologous lectin suppressed the symbiotic properties of inactive strain of nodule bacteria. The preincubation of rhizobia with a heterologous pea lectin had virtually no effect on functioning of symbiotic apparatus and photosynthetic rate, whereas the preincubation of root nodule bacteria with human albumin exerted an effect similar to that induced by a homologous lectin on symbiotic productivity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Productivity of soybean-rhizobium symbiosis after modification of root nodule bacteria activity with exogenous proteins

Loading next page...
 
/lp/springer_journal/productivity-of-soybean-rhizobium-symbiosis-after-modification-of-root-BRu56gb6pp
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2007 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443707030119
Publisher site
See Article on Publisher Site

Abstract

Plant growth experiments were conducted to assess symbiotic efficiency, photosynthetic rates, and the development of soybean (Glycine max (L.) Merrill) seedlings after seed inoculation with active and inactive strains of root nodule bacteria Bradyrhizobium japonicum preincubated in the presence homologous and heterologous proteins. The properties of active and inactive symbiotic strains were differentially modulated by homologous soybean lectin, which had a marked influence on plant physiological condition. The incubation of active rhizobia with a homologous lectin, i.e., lectin of the respective plant, increased the nitrogen-fixing activity of nodules and, consequently, elevated photosynthetic rates and weight increments in soybean plants. At the same time, the homologous lectin suppressed the symbiotic properties of inactive strain of nodule bacteria. The preincubation of rhizobia with a heterologous pea lectin had virtually no effect on functioning of symbiotic apparatus and photosynthetic rate, whereas the preincubation of root nodule bacteria with human albumin exerted an effect similar to that induced by a homologous lectin on symbiotic productivity.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: May 25, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off