Producing marker-free Kalanchoe plants expressing antimicrobial peptide cecropin P1 gene

Producing marker-free Kalanchoe plants expressing antimicrobial peptide cecropin P1 gene Kalanchoe pinnate (Kalanchöe pinnata L. ) plants with synthetic gene of antimicrobial peptide cecropin P1 (CP1) under the control of promoter 35S RNA of cauliflower mosaic virus (CaMV 35S) were produced. For transformation, a modified binary vector not containing selective genes of tolerance against antibiotics and herbicides was used. Screening of the marker-free transformed plants was conducted on the medium without selective antibiotics by revealing antibacterial activity of plant extracts and cecropin P1. The marker-free plants produced displayed increased resistance against bacterial and fungus phytopathogens, while their extracts were characterized by antimicrobial activity for human and animal pathogens. These plants meet the requirements of biosafety and may be used as producers of cecropin P1 in pharmaceutics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Producing marker-free Kalanchoe plants expressing antimicrobial peptide cecropin P1 gene

Loading next page...
 
/lp/springer_journal/producing-marker-free-kalanchoe-plants-expressing-antimicrobial-kkcZH5rhGf
Publisher
Pleiades Publishing
Copyright
Copyright © 2016 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443716020163
Publisher site
See Article on Publisher Site

Abstract

Kalanchoe pinnate (Kalanchöe pinnata L. ) plants with synthetic gene of antimicrobial peptide cecropin P1 (CP1) under the control of promoter 35S RNA of cauliflower mosaic virus (CaMV 35S) were produced. For transformation, a modified binary vector not containing selective genes of tolerance against antibiotics and herbicides was used. Screening of the marker-free transformed plants was conducted on the medium without selective antibiotics by revealing antibacterial activity of plant extracts and cecropin P1. The marker-free plants produced displayed increased resistance against bacterial and fungus phytopathogens, while their extracts were characterized by antimicrobial activity for human and animal pathogens. These plants meet the requirements of biosafety and may be used as producers of cecropin P1 in pharmaceutics.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Apr 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off