Producing low-caffeine tea through post-transcriptional silencing of caffeine synthase mRNA

Producing low-caffeine tea through post-transcriptional silencing of caffeine synthase mRNA In this study, attempt has been made to produce a selected cultivar of tea with low-caffeine content using RNAi technology. The caffeine biosynthetic pathway in tea has been proposed to involve three N-methyltransferases such as xanthosine methyltransferase, 7-N-methylxanthine methyltransferase and 3, 7-dimethylxanthine methyltransferase. Last two steps of caffeine biosynthesis in tea have been known to be catalyzed by a bifunctional enzyme known as caffeine synthase. To suppress the caffeine synthesis in the selected tea [Camellia sinensis (L.) O. Kuntze] cv. Kangra jat, we isolated a partial fragment of caffeine synthase (CS) from the same cultivar and used to design RNAi construct (pFGC1008-CS). Somatic embryos were transformed with the developed construct using biolistic method. Transformed somatic embryos showed reduction in the levels of CS transcript expression as well as in caffeine content. Plants were regenerated from the transformed somatic embryos. Transgenic plants showed a significant suppression of CS transcript expression and also showed a reduction of 44–61% in caffeine and 46–67% in theobromine contents as compared to the controls. These results suggest that the RNAi construct developed here using a single partial fragment of CS gene reduced the expression of the targeted endogenous gene significantly. However, the reduction in theobromine content in addition to caffeine documented the involvement of this single CS in the catalysis of last two methyl transfer steps in caffeine biosynthesis of tea. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Producing low-caffeine tea through post-transcriptional silencing of caffeine synthase mRNA

Loading next page...
 
/lp/springer_journal/producing-low-caffeine-tea-through-post-transcriptional-silencing-of-ar1zZduH9l
Publisher
Springer Netherlands
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Life Sciences; Biochemistry, general; Plant Pathology; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-011-9785-x
Publisher site
See Article on Publisher Site

Abstract

In this study, attempt has been made to produce a selected cultivar of tea with low-caffeine content using RNAi technology. The caffeine biosynthetic pathway in tea has been proposed to involve three N-methyltransferases such as xanthosine methyltransferase, 7-N-methylxanthine methyltransferase and 3, 7-dimethylxanthine methyltransferase. Last two steps of caffeine biosynthesis in tea have been known to be catalyzed by a bifunctional enzyme known as caffeine synthase. To suppress the caffeine synthesis in the selected tea [Camellia sinensis (L.) O. Kuntze] cv. Kangra jat, we isolated a partial fragment of caffeine synthase (CS) from the same cultivar and used to design RNAi construct (pFGC1008-CS). Somatic embryos were transformed with the developed construct using biolistic method. Transformed somatic embryos showed reduction in the levels of CS transcript expression as well as in caffeine content. Plants were regenerated from the transformed somatic embryos. Transgenic plants showed a significant suppression of CS transcript expression and also showed a reduction of 44–61% in caffeine and 46–67% in theobromine contents as compared to the controls. These results suggest that the RNAi construct developed here using a single partial fragment of CS gene reduced the expression of the targeted endogenous gene significantly. However, the reduction in theobromine content in addition to caffeine documented the involvement of this single CS in the catalysis of last two methyl transfer steps in caffeine biosynthesis of tea.

Journal

Plant Molecular BiologySpringer Journals

Published: May 12, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off