Process planning for laser wire-feed metal additive manufacturing system

Process planning for laser wire-feed metal additive manufacturing system Laser wire-feed metal additive manufacturing (LWMAM) is a promising additive manufacturing technology that is well suited to build from various materials near net shape mid- to large-size complex components with a high deposition rate and high material usage. It could find applications in diverse industrial sectors such as aerospace, automotive, oil and gas, and rapid tooling. To further gain the acceptance of this technology, the development of process planning software is identified as one of the main challenges. LWMAM has several specific features that complicate the process planning compared to other similar additive manufacturing processes. LWMAM is still in its infancy. In this study, key features involved in the LWMAM process were first identified by building a prismatic block. The corresponding strategies were proposed and tested. Then, a MATLAB-based process planning software was developed that consisted of modules for volume slicing, contour filling, track trimming/elongating, stair-step effect compensation, and post-processing. Free-form contours and a propeller were successfully built by using the developed software. The as-built shapes were measured and compared to the CAD models. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Process planning for laser wire-feed metal additive manufacturing system

Loading next page...
 
/lp/springer_journal/process-planning-for-laser-wire-feed-metal-additive-manufacturing-0YjZgCh2gQ
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag London Ltd.
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-1179-z
Publisher site
See Article on Publisher Site

Abstract

Laser wire-feed metal additive manufacturing (LWMAM) is a promising additive manufacturing technology that is well suited to build from various materials near net shape mid- to large-size complex components with a high deposition rate and high material usage. It could find applications in diverse industrial sectors such as aerospace, automotive, oil and gas, and rapid tooling. To further gain the acceptance of this technology, the development of process planning software is identified as one of the main challenges. LWMAM has several specific features that complicate the process planning compared to other similar additive manufacturing processes. LWMAM is still in its infancy. In this study, key features involved in the LWMAM process were first identified by building a prismatic block. The corresponding strategies were proposed and tested. Then, a MATLAB-based process planning software was developed that consisted of modules for volume slicing, contour filling, track trimming/elongating, stair-step effect compensation, and post-processing. Free-form contours and a propeller were successfully built by using the developed software. The as-built shapes were measured and compared to the CAD models.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Oct 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off