Problems of Robustness for Universal Coding Schemes

Problems of Robustness for Universal Coding Schemes The Lempel–Ziv universal coding scheme is asymptotically optimal for the class of all stationary ergodic sources. A problem of robustness of this property under small violations of ergodicity is studied. The notion of deficiency of algorithmic randomness is used as a measure of disagreement between data sequence and probability measure. We prove that universal compression schemes from a large class are nonrobust in the following sense: If the randomness deficiency grows arbitrarily slowly on initial fragments of an infinite sequence, then the property of asymptotic optimality of any universal compression algorithm can be violated. Lempel–Ziv compression algorithms are robust on infinite sequences generated by ergodic Markov chains when the randomness deficiency of their initial fragments of length n grows as o(n). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Problems of Information Transmission Springer Journals

Problems of Robustness for Universal Coding Schemes

Loading next page...
 
/lp/springer_journal/problems-of-robustness-for-universal-coding-schemes-gXpxX7teTp
Publisher
Springer Journals
Copyright
Copyright © 2003 by MAIK “Nauka/Interperiodica”
Subject
Engineering; Communications Engineering, Networks; Electrical Engineering; Information Storage and Retrieval; Systems Theory, Control
ISSN
0032-9460
eISSN
1608-3253
D.O.I.
10.1023/A:1023626414365
Publisher site
See Article on Publisher Site

Abstract

The Lempel–Ziv universal coding scheme is asymptotically optimal for the class of all stationary ergodic sources. A problem of robustness of this property under small violations of ergodicity is studied. The notion of deficiency of algorithmic randomness is used as a measure of disagreement between data sequence and probability measure. We prove that universal compression schemes from a large class are nonrobust in the following sense: If the randomness deficiency grows arbitrarily slowly on initial fragments of an infinite sequence, then the property of asymptotic optimality of any universal compression algorithm can be violated. Lempel–Ziv compression algorithms are robust on infinite sequences generated by ergodic Markov chains when the randomness deficiency of their initial fragments of length n grows as o(n).

Journal

Problems of Information TransmissionSpringer Journals

Published: Oct 4, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off