Probing spatial heterogeneity in silicon thin films by Raman spectroscopy

Probing spatial heterogeneity in silicon thin films by Raman spectroscopy Raman spectroscopy is a powerful technique for revealing spatial heterogeneity in solid-state structures but heretofore has not been able to measure spectra from multiple positions on a sample within a short time. Here, we report a novel Raman spectroscopy approach to study the spatial heterogeneity in thermally annealed amorphous silicon (a-Si) thin films. Raman spectroscopy employs both a galvano-mirror and a two-dimensional charge-coupled device detector system, which can measure spectra at 200 nm intervals at every position along a sample in a short time. We analyzed thermally annealed a-Si thin films with different film thicknesses. The experimental results suggest a correlation between the distribution of the average nanocrystal size over different spatial regions and the thickness of the thermally annealed a-Si thin film. The ability to evaluate the average size of the Si nanocrystals through rapid data acquisition is expected to lead to research into new applications of nanocrystals. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

Probing spatial heterogeneity in silicon thin films by Raman spectroscopy

Loading next page...
 
/lp/springer_journal/probing-spatial-heterogeneity-in-silicon-thin-films-by-raman-nA9jRthsfI
Publisher
Nature Publishing Group UK
Copyright
Copyright © 2017 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-017-16724-4
Publisher site
See Article on Publisher Site

Abstract

Raman spectroscopy is a powerful technique for revealing spatial heterogeneity in solid-state structures but heretofore has not been able to measure spectra from multiple positions on a sample within a short time. Here, we report a novel Raman spectroscopy approach to study the spatial heterogeneity in thermally annealed amorphous silicon (a-Si) thin films. Raman spectroscopy employs both a galvano-mirror and a two-dimensional charge-coupled device detector system, which can measure spectra at 200 nm intervals at every position along a sample in a short time. We analyzed thermally annealed a-Si thin films with different film thicknesses. The experimental results suggest a correlation between the distribution of the average nanocrystal size over different spatial regions and the thickness of the thermally annealed a-Si thin film. The ability to evaluate the average size of the Si nanocrystals through rapid data acquisition is expected to lead to research into new applications of nanocrystals.

Journal

Scientific ReportsSpringer Journals

Published: Nov 29, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off