Probing quantum coherence, uncertainty, steerability of quantum coherence and quantum phase transition in the spin model

Probing quantum coherence, uncertainty, steerability of quantum coherence and quantum phase... In this paper, we study the relation among quantum coherence, uncertainty, steerability of quantum coherence based on skew information and quantum phase transition in the spin model by employing quantum renormalization-group method. Interestingly, the results show that the value of the local quantum uncertainty is equal to the local quantum coherence corresponding to local observable $$\sigma _z$$ σ z in XXZ model, and unlikely in XY model, local quantum uncertainty is minimal optimization of the local quantum coherence over local observable $$\sigma _x$$ σ x and this proposition can be generalized to a multipartite system. Therefore, one can directly achieve quantum correlation measured by local quantum uncertainty and coherence by choosing different local observables $$\sigma _x$$ σ x , $$\sigma _z$$ σ z , corresponding to the XY model and XXZ model separately. Meanwhile, steerability of quantum coherence in XY and XXZ model is investigated systematically, and our results reveal that no matter what times the QRG iterations are carried out, the quantum coherence of the state of subsystem cannot be steerable, which can also be suitable for block–block steerability of local quantum coherence in both XY and XXZ models. On the other hand, we have illustrated that the quantum coherence and uncertainty measure can efficiently detect the quantum critical points associated with quantum phase transitions after several iterations of the renormalization. Moreover, the nonanalytic and scaling behaviors of steerability of local quantum coherence have been also taken into consideration. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Probing quantum coherence, uncertainty, steerability of quantum coherence and quantum phase transition in the spin model

Loading next page...
 
/lp/springer_journal/probing-quantum-coherence-uncertainty-steerability-of-quantum-go0LPQkHI4
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-017-1588-9
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial