Probe modification for scanning-probe microscopy by the focused ion beam method

Probe modification for scanning-probe microscopy by the focused ion beam method The paper presents the results of experimental investigations into probe modification for atomic-force microscopy (AFM) and scanning tunneling microscopy (STM) by etching the point of AFM cantilevers and tungsten STM probes by applying the method of focused ion beams (FIBs). It is shown that the use of etching by the IB method allows one to obtain the probes with rounding that is less than 10 nm and with an aspect ratio of 1: 50. The application of these probes increases the resolution and the reliability of measuring by the AFM and STM methods. The obtained results can be used for developing the technological processes of production and modification of sensor probes for AFM and STM, as well as the methods for diagnostics of the structures of microelectronics, nanoelectronics and the microsystem and nanosystem technologies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Microelectronics Springer Journals

Probe modification for scanning-probe microscopy by the focused ion beam method

Loading next page...
 
/lp/springer_journal/probe-modification-for-scanning-probe-microscopy-by-the-focused-ion-hjGhb1EpH6
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2012 by Pleiades Publishing, Ltd.
Subject
Engineering; Electrical Engineering
ISSN
1063-7397
eISSN
1608-3415
D.O.I.
10.1134/S1063739712010052
Publisher site
See Article on Publisher Site

Abstract

The paper presents the results of experimental investigations into probe modification for atomic-force microscopy (AFM) and scanning tunneling microscopy (STM) by etching the point of AFM cantilevers and tungsten STM probes by applying the method of focused ion beams (FIBs). It is shown that the use of etching by the IB method allows one to obtain the probes with rounding that is less than 10 nm and with an aspect ratio of 1: 50. The application of these probes increases the resolution and the reliability of measuring by the AFM and STM methods. The obtained results can be used for developing the technological processes of production and modification of sensor probes for AFM and STM, as well as the methods for diagnostics of the structures of microelectronics, nanoelectronics and the microsystem and nanosystem technologies.

Journal

Russian MicroelectronicsSpringer Journals

Published: Jan 8, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off