Probability-Possibility Transformations, Triangular Fuzzy Sets, and Probabilistic Inequalities

Probability-Possibility Transformations, Triangular Fuzzy Sets, and Probabilistic Inequalities A possibility measure can encode a family of probability measures. This fact is the basis for a transformation of a probability distribution into a possibility distribution that generalises the notion of best interval substitute to a probability distribution with prescribed confidence. This paper describes new properties of this transformation, by relating it with the well-known probability inequalities of Bienaymé-Chebychev and Camp-Meidel. The paper also provides a justification of symmetric triangular fuzzy numbers in the spirit of such inequalities. It shows that the cuts of such a triangular fuzzy number contains the “confidence intervals” of any symmetric probability distribution with the same mode and support. This result is also the basis of a fuzzy approach to the representation of uncertainty in measurement. It consists in representing measurements by a family of nested intervals with various confidence levels. From the operational point of view, the proposed representation is compatible with the recommendations of the ISO Guide for the expression of uncertainty in physical measurement. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reliable Computing Springer Journals

Probability-Possibility Transformations, Triangular Fuzzy Sets, and Probabilistic Inequalities

, Volume 10 (4) – Oct 2, 2004
25 pages

/lp/springer_journal/probability-possibility-transformations-triangular-fuzzy-sets-and-0s8sPLOwNP
Publisher
Subject
Mathematics; Numeric Computing; Approximations and Expansions; Computational Mathematics and Numerical Analysis; Mathematical Modeling and Industrial Mathematics
ISSN
1385-3139
eISSN
1573-1340
D.O.I.
10.1023/B:REOM.0000032115.22510.b5
Publisher site
See Article on Publisher Site

Abstract

A possibility measure can encode a family of probability measures. This fact is the basis for a transformation of a probability distribution into a possibility distribution that generalises the notion of best interval substitute to a probability distribution with prescribed confidence. This paper describes new properties of this transformation, by relating it with the well-known probability inequalities of Bienaymé-Chebychev and Camp-Meidel. The paper also provides a justification of symmetric triangular fuzzy numbers in the spirit of such inequalities. It shows that the cuts of such a triangular fuzzy number contains the “confidence intervals” of any symmetric probability distribution with the same mode and support. This result is also the basis of a fuzzy approach to the representation of uncertainty in measurement. It consists in representing measurements by a family of nested intervals with various confidence levels. From the operational point of view, the proposed representation is compatible with the recommendations of the ISO Guide for the expression of uncertainty in physical measurement.

Journal

Reliable ComputingSpringer Journals

Published: Oct 2, 2004

DeepDyve is your personal research library

It’s your single place to instantly
that matters to you.

over 18 million articles from more than
15,000 peer-reviewed journals.

All for just \$49/month

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

DeepDyve

DeepDyve

Pro

Price

FREE

\$49/month
\$360/year

Save searches from
PubMed

Create lists to

Export lists, citations