Probabilistic inverse ranking queries in uncertain databases

Probabilistic inverse ranking queries in uncertain databases Query processing in the uncertain database has become increasingly important due to the wide existence of uncertain data in many real applications. Different from handling precise data, the uncertain query processing needs to consider the data uncertainty and answer queries with confidence guarantees. In this paper, we formulate and tackle an important query, namely probabilistic inverse ranking (PIR) query, which retrieves possible ranks of a given query object in an uncertain database with confidence above a probability threshold. We present effective pruning methods to reduce the PIR search space, which can be seamlessly integrated into an efficient query procedure. Moreover, we tackle the problem of PIR query processing in high dimensional spaces, which reduces high dimensional uncertain data to a lower dimensional space. Furthermore, we study three interesting and useful aggregate PIR queries, that is, MAX, top- m , and AVG PIRs. Moreover, we also study an important query type, PIR with uncertain query object (namely UQ-PIR), and design specific rules to facilitate the pruning. Extensive experiments have demonstrated the efficiency and effectiveness of our proposed approaches over both real and synthetic data sets, under various experimental settings. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Probabilistic inverse ranking queries in uncertain databases

Loading next page...
 
/lp/springer_journal/probabilistic-inverse-ranking-queries-in-uncertain-databases-YEPBiOI0r4
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-010-0195-5
Publisher site
See Article on Publisher Site

Abstract

Query processing in the uncertain database has become increasingly important due to the wide existence of uncertain data in many real applications. Different from handling precise data, the uncertain query processing needs to consider the data uncertainty and answer queries with confidence guarantees. In this paper, we formulate and tackle an important query, namely probabilistic inverse ranking (PIR) query, which retrieves possible ranks of a given query object in an uncertain database with confidence above a probability threshold. We present effective pruning methods to reduce the PIR search space, which can be seamlessly integrated into an efficient query procedure. Moreover, we tackle the problem of PIR query processing in high dimensional spaces, which reduces high dimensional uncertain data to a lower dimensional space. Furthermore, we study three interesting and useful aggregate PIR queries, that is, MAX, top- m , and AVG PIRs. Moreover, we also study an important query type, PIR with uncertain query object (namely UQ-PIR), and design specific rules to facilitate the pruning. Extensive experiments have demonstrated the efficiency and effectiveness of our proposed approaches over both real and synthetic data sets, under various experimental settings.

Journal

The VLDB JournalSpringer Journals

Published: Feb 1, 2011

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off