Pro-apoptotic cationic host defense peptides rich in lysine or arginine to reverse drug resistance by disrupting tumor cell membrane

Pro-apoptotic cationic host defense peptides rich in lysine or arginine to reverse drug... Host defense peptides have been demonstrated to exhibit prominent advantages in cancer therapy with selective binding ability toward tumor cells via electrostatic attractions, which can overcome the limitations of traditional chemotherapy drugs, such as toxicity on non-malignant cells and the emergence of drug resistance. In this work, we redesigned and constructed a series of cationic peptides by inserting hydrophobic residues into hydrophilic surface or replacing lysine (K) with arginine (R), based on the experience from the preliminary work of host defense peptide B1. In-depth studies demonstrated that the engineered peptides exhibited more potent anti-cancer activity against various cancer cell lines and much lower toxicity to normal cells compared with B1. Further investigation revealed that compounds I-3 and I-7 could act on cancer cell membranes and subsequently alter the permeability, which facilitated obvious pro-apoptotic activity in paclitaxel-resistant cell line (MCF-7/Taxol). The result of mitochondrial membrane potential assay (ΔΨm) demonstrated that the peptides induced ΔΨm dissipation and mitochondrial depolarization. The caspase-3 cellular activity assay showed that the anti-cancer activity of peptides functioned via caspase-3-dependent apoptosis. The study yielded compound I-7 with superior properties for antineoplastic activity in comparison to B1, which makes it a promising potential candidate for cancer therapy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Amino Acids Springer Journals

Pro-apoptotic cationic host defense peptides rich in lysine or arginine to reverse drug resistance by disrupting tumor cell membrane

Loading next page...
 
/lp/springer_journal/pro-apoptotic-cationic-host-defense-peptides-rich-in-lysine-or-5UotSO04G8
Publisher
Springer Vienna
Copyright
Copyright © 2017 by Springer-Verlag GmbH Austria
Subject
Life Sciences; Biochemistry, general; Analytical Chemistry; Biochemical Engineering; Life Sciences, general; Proteomics; Neurobiology
ISSN
0939-4451
eISSN
1438-2199
D.O.I.
10.1007/s00726-017-2453-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial