Privacy policies for shared content in social network sites

Privacy policies for shared content in social network sites Social networking is one of the major technological phenomena of the Web 2.0, with hundreds of millions of subscribed users. Social networks enable a form of self-expression for users and help them to socialize and share content with other users. In spite of the fact that content sharing represents one of the prominent features of existing Social network sites, they do not provide any mechanisms for collective management of privacy settings for shared content. In this paper, using game theory, we model the problem of collective enforcement of privacy policies on shared data. In particular, we propose a solution that offers automated ways to share images based on an extended notion of content ownership. Building upon the Clarke-Tax mechanism, we describe a simple mechanism that promotes truthfulness and that rewards users who promote co-ownership. Our approach enables social network users to compose friendship based policies based on distances from an agreed upon central user selected using several social networks metrics. We integrate our design with inference techniques that free the users from the burden of manually selecting privacy preferences for each picture. To the best of our knowledge, this is the first time such a privacy protection mechanism for social networking has been proposed. We also extend our mechanism so as to support collective enforcement across multiple social network sites. In the paper, we also show a proof-of-concept application, which we implemented in the context of Facebook, one of today’s most popular social networks. Through our implementation, we show the feasibility of such approach and show that it can be implemented with a minimal increase in overhead to end-users. We complete our analysis by conducting a user study to investigate users’ understanding of co-ownership, usefulness and understanding of our approach. Users responded favorably to the approach, indicating a general understanding of co-ownership and the auction, and found the approach to be both useful and fair. The VLDB Journal Springer Journals

Privacy policies for shared content in social network sites

Loading next page...
Copyright © 2010 by Springer-Verlag
Computer Science; Database Management
Publisher site
See Article on Publisher Site


  • Condorcet winners for public goods
    Chen, L.; Den, X.; Fang, Q.; Tian, F.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial