Priority scheduling to minimize the total tardiness for remanufacturing systems with flow-shop-type reprocessing lines

Priority scheduling to minimize the total tardiness for remanufacturing systems with... This study considers the scheduling problem in remanufacturing systems in which end-of-use/life products are separated into their components at a single disassembly workstation, then each component is reprocessed at one of parallel flow-shop-type reprocessing lines, and finally the reprocessed components are reassembled into remanufactured products at parallel reassembly workstations. The problem is to determine the sequence of products to be disassembled at the disassembly workstation, the sequence of components to be reprocessed at each workstation of the reprocessing lines, and the allocation and sequence of the products to be reassembled at each reassembly workstation for a due date-based objective of minimizing the total tardiness. A mathematical programming model is developed to represent the problem, and a priority scheduling approach is proposed for practical applications. To test performances of priority rules, simulation experiments were done on various test instances, and the results are reported. In particular, we show from additional tests that the approach proposed in this study outperforms the previous one that determines reprocessing and reassembly schedules according to the sequence of disassembling products significantly, and also, the rule combination approach that uses different priority rules on disassembly, reprocessing, and reassembly shops outperforms the single rule approach that uses the same rule over the three subsystems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Priority scheduling to minimize the total tardiness for remanufacturing systems with flow-shop-type reprocessing lines

Loading next page...
 
/lp/springer_journal/priority-scheduling-to-minimize-the-total-tardiness-for-E9UjvNxL2k
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0057-z
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial