Priority-based content processing with Q-routing in information-centric networking (ICN)

Priority-based content processing with Q-routing in information-centric networking (ICN) With exponential increase in the number of users and available data, service providers are facing hard times to satisfy and improve end user experience. Researchers have come up with the idea of exploiting increasing number of routers in a network, and it leads to the development of information-centric networking (ICN). Efficient usage of the in-network caches and content forwarding methodology are the key issues in an ICN architecture. ICN reduces average hop count and correspondingly average content download delay because the intra-domain routers in ICN have storage capacity and they can act as temporary content provider. In this paper, we address the content management issue in a cache with finite storage capability and propose an efficient content management policy that changes a router to a self-sustained cache. We propose a novel methodology to process content packets in the buffer of a cache and correspondingly reduce the propagation delay through a cache. We simulate our proposed algorithm over real-life network environment and evaluate the performance of different user experience metrics, e.g. average latency, throughput, goodput, and link load. Simulation results suggest that our proposed model outperforms the existing state-of-the-art on-path caching strategies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Priority-based content processing with Q-routing in information-centric networking (ICN)

Loading next page...
 
/lp/springer_journal/priority-based-content-processing-with-q-routing-in-information-nJpks1exwn
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-016-0665-9
Publisher site
See Article on Publisher Site

Abstract

With exponential increase in the number of users and available data, service providers are facing hard times to satisfy and improve end user experience. Researchers have come up with the idea of exploiting increasing number of routers in a network, and it leads to the development of information-centric networking (ICN). Efficient usage of the in-network caches and content forwarding methodology are the key issues in an ICN architecture. ICN reduces average hop count and correspondingly average content download delay because the intra-domain routers in ICN have storage capacity and they can act as temporary content provider. In this paper, we address the content management issue in a cache with finite storage capability and propose an efficient content management policy that changes a router to a self-sustained cache. We propose a novel methodology to process content packets in the buffer of a cache and correspondingly reduce the propagation delay through a cache. We simulate our proposed algorithm over real-life network environment and evaluate the performance of different user experience metrics, e.g. average latency, throughput, goodput, and link load. Simulation results suggest that our proposed model outperforms the existing state-of-the-art on-path caching strategies.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Sep 26, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off