Primary Vagal Projection to the Contralateral Non-NTS Region in the Embryonic Chick Brainstem Revealed by Optical Recording

Primary Vagal Projection to the Contralateral Non-NTS Region in the Embryonic Chick Brainstem... Using multiple-site optical recording with the voltage-sensitive dye, NK2761, we found that vagus nerve stimulation in the embryonic chick brainstem elicits postsynaptic responses in an undefined region on the contralateral side. The characteristics of the contralateral optical signals suggested that they correspond to the monosynaptic response that is related to the vagal afferent fibers. The location of the contralateral response was different from the vagal motor nucleus (the dorsal motor nucleus of the vagus nerve) and sensory nucleus (the nucleus of the tractus solitarius), and other brainstem nuclei that receive primary vagal projection. These results show that the vagus nerve innervates and makes functional synaptic connections in a previously unreported region of the brainstem, and suggest that sensory information processing mediated by the vagus nerve is more complex than expected. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Primary Vagal Projection to the Contralateral Non-NTS Region in the Embryonic Chick Brainstem Revealed by Optical Recording

Loading next page...
 
/lp/springer_journal/primary-vagal-projection-to-the-contralateral-non-nts-region-in-the-0wBcs0HXDT
Publisher
Springer-Verlag
Copyright
Copyright © 2006 by Springer Science+Business Media, Inc.
Subject
Life Sciences; Human Physiology; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-005-0829-5
Publisher site
See Article on Publisher Site

Abstract

Using multiple-site optical recording with the voltage-sensitive dye, NK2761, we found that vagus nerve stimulation in the embryonic chick brainstem elicits postsynaptic responses in an undefined region on the contralateral side. The characteristics of the contralateral optical signals suggested that they correspond to the monosynaptic response that is related to the vagal afferent fibers. The location of the contralateral response was different from the vagal motor nucleus (the dorsal motor nucleus of the vagus nerve) and sensory nucleus (the nucleus of the tractus solitarius), and other brainstem nuclei that receive primary vagal projection. These results show that the vagus nerve innervates and makes functional synaptic connections in a previously unreported region of the brainstem, and suggest that sensory information processing mediated by the vagus nerve is more complex than expected.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jan 1, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off