Primary structure and expression of acidic (class II) chitinase in potato

Primary structure and expression of acidic (class II) chitinase in potato Infection of potato (Solanum tuberosum) leaves by the late blight fungus Phytophthora infestans or treatment with fungal elicitor leads to a strong increase in chitinase activity. We isolated cDNAs encoding acidic (class II) chitinases (ChtA) from potato leaves and determined their structures and expression patterns in healthy and stressed plants. From the total number of cDNAs and the complexity of genomic DNA blots we conclude that acidic chitinase in potato is encoded by a gene family which is considerably smaller than that encoding basic (class I) chitinase (ChtB). The deduced amino acid sequences show 78 to 96% identity to class II chitinases from related plant species (tomato, tobacco) whereas the identity to basic chitinases of potato is in the range of 60%. RNA blot analysis revealed that both acidic and basic chitinases were strongly induced by infection or elicitor treatment and that the induction occurred both locally at the site of infection and systemically in upper uninfected leaves. In contrast, a differential response to other types of stress was observed. Acidic chitinase mRNA was strongly induced by salicylic acid, whereas basic chitinase mRNA was induced by ethylene or wounding. In healthy, untreated plants, acidic chitinase mRNA accumulated also in an organ-, cell-type- and development-specific manner as revealed by RNA blot analysis and in situ RNA hybridization. Relatively high transcript levels were observed in old leaves and young internodes as well as in vascular tissue and cells constituting the stomatal complex in leaves and petioles. Lower, but appreciable mRNA levels were also detectable in roots and various flower organs, particularly in sepals and stamens. The possible implications of these findings in pathogen defense, development and growth processes are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Primary structure and expression of acidic (class II) chitinase in potato

Loading next page...
 
/lp/springer_journal/primary-structure-and-expression-of-acidic-class-ii-chitinase-in-IXIyoEKGPf
Publisher
Springer Journals
Copyright
Copyright © 1997 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005830706507
Publisher site
See Article on Publisher Site

Abstract

Infection of potato (Solanum tuberosum) leaves by the late blight fungus Phytophthora infestans or treatment with fungal elicitor leads to a strong increase in chitinase activity. We isolated cDNAs encoding acidic (class II) chitinases (ChtA) from potato leaves and determined their structures and expression patterns in healthy and stressed plants. From the total number of cDNAs and the complexity of genomic DNA blots we conclude that acidic chitinase in potato is encoded by a gene family which is considerably smaller than that encoding basic (class I) chitinase (ChtB). The deduced amino acid sequences show 78 to 96% identity to class II chitinases from related plant species (tomato, tobacco) whereas the identity to basic chitinases of potato is in the range of 60%. RNA blot analysis revealed that both acidic and basic chitinases were strongly induced by infection or elicitor treatment and that the induction occurred both locally at the site of infection and systemically in upper uninfected leaves. In contrast, a differential response to other types of stress was observed. Acidic chitinase mRNA was strongly induced by salicylic acid, whereas basic chitinase mRNA was induced by ethylene or wounding. In healthy, untreated plants, acidic chitinase mRNA accumulated also in an organ-, cell-type- and development-specific manner as revealed by RNA blot analysis and in situ RNA hybridization. Relatively high transcript levels were observed in old leaves and young internodes as well as in vascular tissue and cells constituting the stomatal complex in leaves and petioles. Lower, but appreciable mRNA levels were also detectable in roots and various flower organs, particularly in sepals and stamens. The possible implications of these findings in pathogen defense, development and growth processes are discussed.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 30, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off