Primary production in nutrient-rich kettle holes and consequences for nutrient and carbon cycling

Primary production in nutrient-rich kettle holes and consequences for nutrient and carbon cycling Kettle holes are often abundant within agriculturally used moraine landscapes. They are highly enriched with nutrients and considered hotspots of carbon turnover. However, data on their primary productivity remain rare. We analysed two kettle holes typical to Germany with common aquatic plant communities during one year. We hypothesised that gross primary production (GPP) rates would be high compared to other temperate freshwater ecosystems, leading to high sediment deposition. Summer GPP rates (4.5–5.1 g C m−2 day−1) were higher than those of most temperate freshwater systems, but GPP rates were reduced by 90% in winter. Macrophytes dominated GPP from May to September with emergent macrophytes accounting for half of the GPP. Periphyton contributed to most of the system GPP throughout the rest of the year. Sediment deposition rates were high and correlated with GPP in one kettle hole. In contrast, due to prolonged periods of anoxia, aerobic sediment mineralisation was low while sediment phosphorus release was significant. Our results suggest that kettle holes have a high potential for carbon burial, provided they do not fully dry up during warm years. Due to their unique features, they should not be automatically grouped with ponds and shallow lakes in global carbon budget estimates. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Hydrobiologia Springer Journals

Primary production in nutrient-rich kettle holes and consequences for nutrient and carbon cycling

Loading next page...
 
/lp/springer_journal/primary-production-in-nutrient-rich-kettle-holes-and-consequences-for-0oqja6JrV4
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Springer International Publishing AG
Subject
Life Sciences; Freshwater & Marine Ecology; Ecology; Zoology
ISSN
0018-8158
eISSN
1573-5117
D.O.I.
10.1007/s10750-017-3337-6
Publisher site
See Article on Publisher Site

Abstract

Kettle holes are often abundant within agriculturally used moraine landscapes. They are highly enriched with nutrients and considered hotspots of carbon turnover. However, data on their primary productivity remain rare. We analysed two kettle holes typical to Germany with common aquatic plant communities during one year. We hypothesised that gross primary production (GPP) rates would be high compared to other temperate freshwater ecosystems, leading to high sediment deposition. Summer GPP rates (4.5–5.1 g C m−2 day−1) were higher than those of most temperate freshwater systems, but GPP rates were reduced by 90% in winter. Macrophytes dominated GPP from May to September with emergent macrophytes accounting for half of the GPP. Periphyton contributed to most of the system GPP throughout the rest of the year. Sediment deposition rates were high and correlated with GPP in one kettle hole. In contrast, due to prolonged periods of anoxia, aerobic sediment mineralisation was low while sediment phosphorus release was significant. Our results suggest that kettle holes have a high potential for carbon burial, provided they do not fully dry up during warm years. Due to their unique features, they should not be automatically grouped with ponds and shallow lakes in global carbon budget estimates.

Journal

HydrobiologiaSpringer Journals

Published: Oct 4, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off