Primary blast waves induced brain dynamics influenced by head orientations

Primary blast waves induced brain dynamics influenced by head orientations There is controversy regarding the directional dependence of head responses subjected to blast loading. The goal of this work is to characterize the role of head orientation in the mechanics of blast wave-head interactions as well as the load transmitting to the brain. A three-dimensional human head model with anatomical details was reconstructed from computed tomography images. Three different head orientations with respect to the oncoming blast wave, i.e., front-on with head facing blast, back-on with head facing away from blast, and side-on with right side exposed to blast, were considered. The reflected pressure at the blast wave-head interface positively correlated with the skull curvature. It is evidenced by the maximum reflected pressure occurring at the eye socket with the largest curvature on the skull. The reflected pressure pattern along with the local skull areas could further influence the intracranial pressure distributions within the brain. We did find out that the maximum coup pressure of 1.031 MPa in the side-on case as well as the maximum contrecoup pressure of −0.124 MPa in the back-on case. Moreover, the maximum principal strain (MPS) was also monitored due to its indication to diffuse brain injury. It was observed that the peak MPS located in the frontal cortex region regardless of the head orientation. However, the local peak MPS within each individual function region of the brain depended on the head orientation. The detailed interactions between blast wave and head orientations provided insights for evaluating the brain dynamics, as well as biomechanical factors leading to traumatic brain injury. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biomedical Engineering Letters Springer Journals

Primary blast waves induced brain dynamics influenced by head orientations

Loading next page...
 
/lp/springer_journal/primary-blast-waves-induced-brain-dynamics-influenced-by-head-ajZe2M6Dtz
Publisher
The Korean Society of Medical and Biological Engineering
Copyright
Copyright © 2017 by Korean Society of Medical and Biological Engineering and Springer
Subject
Engineering; Biomedical Engineering; Biological and Medical Physics, Biophysics; Biomedicine, general; Medical and Radiation Physics
ISSN
2093-9868
eISSN
2093-985X
D.O.I.
10.1007/s13534-017-0027-2
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial