Prevalence of Concentrated Flow Paths in Agricultural Fields in Southern Illinois

Prevalence of Concentrated Flow Paths in Agricultural Fields in Southern Illinois Literature on prevalence of concentrated flow paths (CPFs) in agricultural fields are limited at field scale with only few studies that address occurrence of CFPs at large geographic extent. This study used high-resolution Light Detection and Ranging (LiDAR) data to identify CFPs in agricultural fields and calculate the percentage of the fields drained by CFPs at a county scale. In 389 agricultural fields across Jackson County, southern Illinois, this study also investigated the association between field characteristics and CFP formation using multiple regression and CART analysis. The mean number of CFPs in a field was 5 with a minimum of 0 and maximum of 17 CFPs. The majority of the CFPs fell under the large category for CFP length and drainage area that corresponds with high mean percent (81%) of field area drained by the CFPs. Further, 85% of the fields had more than 70% of their area drained by CFPs. The multiple regression and CART analysis showed slope as an important factor influencing CFP characteristics such as number of CFPs and CFP length. Both analyses also indicated physical soil properties such as bulk density, soil erodibility factor, saturated hydraulic conductivity, LS factor, organic matter, and percent sand were also predictors of the CFP characteristics. However, these factors explained only 2 to 12% of the variation observed. The significant presence of CFP’s has important implications for water quality since current conservation practices such as riparian buffers were not designed to address concentrated flow from agricultural fields. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water, Air, & Soil Pollution Springer Journals

Prevalence of Concentrated Flow Paths in Agricultural Fields in Southern Illinois

Loading next page...
 
/lp/springer_journal/prevalence-of-concentrated-flow-paths-in-agricultural-fields-in-zqWUYTH4Fh
Publisher
Springer International Publishing
Copyright
Copyright © 2018 by Springer International Publishing AG, part of Springer Nature
Subject
Environment; Environment, general; Water Quality/Water Pollution; Atmospheric Protection/Air Quality Control/Air Pollution; Soil Science & Conservation; Hydrogeology; Climate Change/Climate Change Impacts
ISSN
0049-6979
eISSN
1573-2932
D.O.I.
10.1007/s11270-018-3841-y
Publisher site
See Article on Publisher Site

Abstract

Literature on prevalence of concentrated flow paths (CPFs) in agricultural fields are limited at field scale with only few studies that address occurrence of CFPs at large geographic extent. This study used high-resolution Light Detection and Ranging (LiDAR) data to identify CFPs in agricultural fields and calculate the percentage of the fields drained by CFPs at a county scale. In 389 agricultural fields across Jackson County, southern Illinois, this study also investigated the association between field characteristics and CFP formation using multiple regression and CART analysis. The mean number of CFPs in a field was 5 with a minimum of 0 and maximum of 17 CFPs. The majority of the CFPs fell under the large category for CFP length and drainage area that corresponds with high mean percent (81%) of field area drained by the CFPs. Further, 85% of the fields had more than 70% of their area drained by CFPs. The multiple regression and CART analysis showed slope as an important factor influencing CFP characteristics such as number of CFPs and CFP length. Both analyses also indicated physical soil properties such as bulk density, soil erodibility factor, saturated hydraulic conductivity, LS factor, organic matter, and percent sand were also predictors of the CFP characteristics. However, these factors explained only 2 to 12% of the variation observed. The significant presence of CFP’s has important implications for water quality since current conservation practices such as riparian buffers were not designed to address concentrated flow from agricultural fields.

Journal

Water, Air, & Soil PollutionSpringer Journals

Published: Jun 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off