Pressure/velocity coupling induced by a near wall wake

Pressure/velocity coupling induced by a near wall wake A combined wall pressure/velocity analysis of the wake of a disk located in the vicinity of a flat wall is presented in this paper. One gap ratio only is selected. In this situation, the footprint of the flow unsteadiness on the magnitude of the wall fluctuating pressure is significant while the natural vortex shedding properties of the wake are only slightly altered. Spatio-temporal velocity and pressure/velocity correlations are analyzed. They carry the signature of the large-scale coherence and periodicity associated with vortex shedding and exhibit characteristic phase relations. Advanced statistical analysis techniques are adapted and developed. A conditional phase averaging of the pressure and velocity fields is obtained. The proper orthogonal decomposition of a spatio-temporal pressure data set on the axis of the near wake is shown to be efficient (1) to determine the phase of the spatio-temporal pressure field projected on the two first modes and (2) to distinguish between quiescent random signatures and more energetic phases. Conditional statistics show very clearly that the large-scale structures interact with the flat wall. Finally, a linear stochastic estimation (LSE) of the velocity field is computed from the fluctuating pressure data. We show the superiority of the spatio-temporal LSE over the spatial LSE in predicting the kinetic energy and the coherent spectral properties of the fluctuating velocity field. Moreover, the linear stochastic estimation is very good in predicting the phase-averaged conditional velocity field. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Pressure/velocity coupling induced by a near wall wake

Loading next page...
 
/lp/springer_journal/pressure-velocity-coupling-induced-by-a-near-wall-wake-pUj4JixTZ5
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-010-0820-5
Publisher site
See Article on Publisher Site

Abstract

A combined wall pressure/velocity analysis of the wake of a disk located in the vicinity of a flat wall is presented in this paper. One gap ratio only is selected. In this situation, the footprint of the flow unsteadiness on the magnitude of the wall fluctuating pressure is significant while the natural vortex shedding properties of the wake are only slightly altered. Spatio-temporal velocity and pressure/velocity correlations are analyzed. They carry the signature of the large-scale coherence and periodicity associated with vortex shedding and exhibit characteristic phase relations. Advanced statistical analysis techniques are adapted and developed. A conditional phase averaging of the pressure and velocity fields is obtained. The proper orthogonal decomposition of a spatio-temporal pressure data set on the axis of the near wake is shown to be efficient (1) to determine the phase of the spatio-temporal pressure field projected on the two first modes and (2) to distinguish between quiescent random signatures and more energetic phases. Conditional statistics show very clearly that the large-scale structures interact with the flat wall. Finally, a linear stochastic estimation (LSE) of the velocity field is computed from the fluctuating pressure data. We show the superiority of the spatio-temporal LSE over the spatial LSE in predicting the kinetic energy and the coherent spectral properties of the fluctuating velocity field. Moreover, the linear stochastic estimation is very good in predicting the phase-averaged conditional velocity field.

Journal

Experiments in FluidsSpringer Journals

Published: Jan 22, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off