Pressure-field extraction on unstructured flow data using a Voronoi tessellation-based networking algorithm: a proof-of-principle study

Pressure-field extraction on unstructured flow data using a Voronoi tessellation-based networking... A novel technique is described for pressure extraction from Lagrangian particle-tracking data. The technique uses a Poisson solver to extract the pressure field on a network of data nodes, which is constructed using the Voronoi tessellation and the Delaunay triangulation. The technique is demonstrated on two cases: synthetic Lagrangian data generated for the analytical case of Hill’s spherical vortex, and the flow in the wake behind a NACA 0012 which was impulsively accelerated to $$Re = 7{,}500$$ R e = 7 , 500 . The experimental data were collected using four-camera, three-dimensional particle-tracking velocimetry. For both the analytical case and the experimental case, the dependence of pressure-field error or sensitivity on the normalized spatial particle density was found to follow similar power-law relationships. It was shown that in order to resolve the salient flow structures from experimental data, the required particle density was an order of magnitude greater than for the analytical case. Furthermore, additional sub-structures continued to be identified in the experimental data as the particle density was increased. The increased density requirements of the experimental data were assumed to be due to a combination of phase-averaging error and the presence of turbulent coherent structures in the flow. Additionally, the computational requirements of the technique were assessed. It was found that in the current implementation, the computational requirements are slightly nonlinear with respect to the number of particles. However, the technique will remain feasible even as advancements in particle-tracking techniques in the future increase the density of Lagrangian data. Experiments in Fluids Springer Journals

Pressure-field extraction on unstructured flow data using a Voronoi tessellation-based networking algorithm: a proof-of-principle study

Loading next page...
Springer Berlin Heidelberg
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial